Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 12(9): e9329, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36188493

ABSTRACT

Nest predation is the main cause of nest failure for ducks. Understanding how habitat features influence predator movements may facilitate management of upland and wetland breeding habitats that reduces predator encounter rates with duck nests and increases nest survival rates. For 1618 duck nests, nest survival increased with distance to phragmites (Phragmites australis), shrubs, telephone poles, human structures, and canals, but not for four other habitat features. Using GPS collars, we tracked 25 raccoons (Procyon lotor) and 16 striped skunks (Mephitis mephitis) over 4 years during waterfowl breeding and found marked differences in how these predators were located relative to specific habitat features; moreover, the probability of duck nests being encountered by predators differed by species. Specifically, proximity to canals, wetlands, trees, levees/roads, human structures, shrubs, and telephone poles increased the likelihood of a nest being encountered by collared raccoons. For collared skunks, nests were more likely to be encountered if they were closer to canals, trees, and shrubs, and farther from wetlands and human structures. Most predator encounters with duck nests were attributable to a few individuals; 29.2% of raccoons and 38.5% of skunks were responsible for 95.6% of total nest encounters. During the central span of duck nesting (April 17-June 14: 58 nights), these seven raccoons and five skunks encountered >1 nest on 50.8 ± 29.2% (mean ± SD) and 41.5 ± 28.3% of nights, respectively, and of those nights individual raccoons and skunks averaged 2.60 ± 1.28 and 2.50 ± 1.09 nest encounters/night, respectively. For collared predators that encountered >1 nest, a higher proportion of nests encountered by skunks had evidence of predation (51.9 ± 26.6%) compared to nests encountered by raccoons (22.3 ± 17.1%). Because duck eggs were most likely consumed as raccoons and skunks opportunistically discovered nests, managing the habitat features those predators most strongly associated with could potentially reduce rates of egg predation.

2.
J Synchrotron Radiat ; 29(Pt 5): 1299-1308, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36073890

ABSTRACT

The SASE3 soft X-ray beamline at the European XFEL has been designed and built to provide experiments with a pink or monochromatic beam in the photon energy range 250-3000 eV. Here, the focus is monochromatic operation of the SASE3 beamline, and the design and performance of the SASE3 grating monochromator are reported. The unique capability of a free-electron laser source to produce short femtosecond pulses of a high degree of coherence challenges the monochromator design by demanding control of both photon energy and temporal resolution. The aim to transport close to transform-limited pulses poses very high demands on the optics quality, in particular on the grating. The current realization of the SASE3 monochromator is discussed in comparison with optimal design performance. At present, the monochromator operates with two gratings: the low-resolution grating is optimized for time-resolved experiments and allows for moderate resolving power of about 2000-5000 along with pulse stretching of a few to a few tens of femtoseconds RMS, and the high-resolution grating reaches a resolving power of 10 000 at the cost of larger pulse stretching.


Subject(s)
Photons , Synchrotrons , Lasers , Radiography , X-Rays
3.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32967827

ABSTRACT

Ultrafast demagnetization of rare-earth metals is distinct from that of 3d ferromagnets, as rare-earth magnetism is dominated by localized 4f electrons that cannot be directly excited by an optical laser pulse. Their demagnetization must involve excitation of magnons, driven either through exchange coupling between the 5d6s-itinerant and 4f-localized electrons or by coupling of 4f spins to lattice excitations. Here, we disentangle the ultrafast dynamics of 5d6s and 4f magnetic moments in terbium metal by time-resolved photoemission spectroscopy. We show that the demagnetization time of the Tb 4f magnetic moments of 400 fs is set by 4f spin-lattice coupling. This is experimentally evidenced by a comparison to ferromagnetic gadolinium and supported by orbital-resolved spin dynamics simulations. Our findings establish coupling of the 4f spins to the lattice via the orbital momentum as an essential mechanism driving magnetization dynamics via ultrafast magnon generation in technically relevant materials with strong magnetic anisotropy.

4.
Psychopharmacology (Berl) ; 237(10): 3125-3137, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32594187

ABSTRACT

Early life stress influences adult psychopathology and is associated with an increase in the propensity for drug use/seeking throughout the lifespan. Animal models corroborate that stress exposure exacerbates maladaptive reactivity to stressful stimuli while also shifting the rewarding properties of many drugs of abuse, including nicotine (NIC), a stimulant commonly misused by adolescents. Interestingly, NIC treatment can also normalize some stress-induced behavioral deficits in adult rodents; however, little is known about NIC's therapeutic efficacy following stress experienced during adolescence. The goal of the following experiments was to elucidate NIC's ability to buffer the negative consequences of stress exposure, and to further assess behavioral responsivity while on the drug. Given that stress often occurs in both physical and non-physical forms, we employed the vicarious social defeat stress (VSDS) model which allows for investigation of both physical (PS) and emotional stress (ES) exposure. After 10 days, exposure to PS and ES decreased interaction with a social target in the social interaction test (SIT), confirming social avoidance. Groups were further divided and given NIC (0.0 or 160 mg/L) in their drinking water. After 1 month of NIC consumption, the mice were exposed to the SIT, elevated plus maze (EPM), and the forced swim test (FST), respectively. NIC-treated mice showed a reversal of stress-induced deficits in the EPM and FST. Surprisingly, the mice did not show improvement in the SIT regardless of treatment condition. Together, these data confirm NIC's ability to normalize some stress-induced behavioral deficits; however, NIC's effects on social behavior need further investigation.


Subject(s)
Nicotine/administration & dosage , Psychological Distress , Social Behavior , Stress, Physiological/drug effects , Stress, Psychological/drug therapy , Age Factors , Animals , Male , Mice , Mice, Inbred C57BL , Nicotinic Agonists/administration & dosage , Stress, Physiological/physiology , Stress, Psychological/psychology , Treatment Outcome
5.
Mol Cell Neurosci ; 102: 103451, 2020 01.
Article in English | MEDLINE | ID: mdl-31794880

ABSTRACT

Globoid cell leukodystrophy (GLD, Krabbe disease, Krabbe's disease) is caused by genetic mutations in the gene encoding, galactosylceramidase (GALC). Deficiency of this enzyme results in central and peripheral nervous system pathology, and is characterized by loss of myelin and an infiltration of globoid cells. The canine model of GLD provides a translational model which faithfully recapitulates much of the human disease pathology. Targeted lipidomic analysis was conducted in serum and cerebrospinal fluid (CSF) over the lifetime of GLD affected and normal canines, and in brain tissue at humane endpoint to better understand disease progression and identify potential biomarkers of disease. Psychosine, a substrate of GALC and primary contributor to the pathology in GLD, was observed to be significantly elevated in the serum and CSF by 2 or 4 weeks of age, respectively, and steadily increased over the lifetime of affected animals. Importantly, psychosine concentration strongly correlated with disease severity. Galactosylceramide, glucosylceramide, and lactosylceramide were also found to be elevated in the CSF of affected animals and increased with age. Psychosine and galactosylceramide were found to be significantly increased in brain tissue at humane endpoint. This study identified several biomarkers which may be useful in the development of therapeutics for GLD.


Subject(s)
Dog Diseases/cerebrospinal fluid , Galactosylceramides/blood , Galactosylceramides/cerebrospinal fluid , Leukodystrophy, Globoid Cell/veterinary , Psychosine/cerebrospinal fluid , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Dog Diseases/blood , Dog Diseases/pathology , Dogs , Female , Leukodystrophy, Globoid Cell/blood , Leukodystrophy, Globoid Cell/cerebrospinal fluid , Leukodystrophy, Globoid Cell/pathology , Male , Psychosine/blood
6.
Neuroradiol J ; 31(2): 168-176, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29350082

ABSTRACT

Purpose The purpose of this study was to compare quantitative diffusion tensor imaging metrics in dogs affected with a model of Krabbe disease to age-matched normal controls. We hypothesized that fractional anisotropy would be decreased and radial diffusivity would be increased in the Krabbe dogs. Methods We used a highly reproducible region-of-interest interrogation technique to measure fractional anisotropy and radial diffusivity in three different white matter regions within the internal capsule and centrum semiovale in four Krabbe affected brains and three age-matched normal control brains. Results Despite all four Krabbe dogs manifesting pelvic limb paralysis at the time of death, age-dependent differences in DTI metrics were observed. In the 9, 12, and 14 week old Krabbe dogs, FA values unexpectedly increased and RD values decreased. FA values were generally higher and RD values generally lower in both regions of the internal capsule in the Krabbe brains during this period. FA values in the brain from the 16 week old Krabbe dog decreased and were lower than in control brains and RD values increased and were higher than in control brain. Conclusion Our findings suggest that FA and RD in the internal capsule and centrum semiovale are affected differently at different ages, despite disease having progressed to pelvic limb paralysis in all dogs evaluated. In 9, 12, and 14 week old Krabbe dogs, higher FA values and lower RD values are seen in the internal capsule. However, in the 16 week old Krabbe dog, lower FA and higher RD values are seen, consistent with previous observations in Krabbe dogs, as well as observations in human Krabbe patients.


Subject(s)
Diffusion Tensor Imaging , Leukodystrophy, Globoid Cell/diagnostic imaging , White Matter/diagnostic imaging , Age Factors , Animals , Anisotropy , Disease Models, Animal , Dogs , Leukodystrophy, Globoid Cell/pathology , White Matter/pathology
7.
Mol Genet Metab ; 122(1-2): 33-35, 2017 09.
Article in English | MEDLINE | ID: mdl-28506393

ABSTRACT

Pegylated recombinant phenylalanine ammonia lyase (pegvaliase) is an enzyme substitution therapy being evaluated for the treatment of phenylketonuria (PKU). PKU is characterized by elevated plasma phenylalanine, which is thought to lead to a deficiency in monoamine neurotransmitters and ultimately, neurocognitive dysfunction. A natural history evaluation in a mouse model of PKU demonstrated a profound decrease in tyrosine hydroxylase (TH) immunoreactivity in several brain regions, beginning at 4weeks of age. Following treatment with pegvaliase, the number of TH positive neurons was increased in several brain regions compared to placebo treated ENU2 mice.


Subject(s)
Phenylalanine Ammonia-Lyase/therapeutic use , Phenylketonurias/complications , Phenylketonurias/drug therapy , Animals , Brain/drug effects , Brain/enzymology , Brain/pathology , Disease Models, Animal , Humans , Mice , Neurotransmitter Agents/administration & dosage , Neurotransmitter Agents/genetics , Neurotransmitter Agents/therapeutic use , Phenylalanine/blood , Phenylalanine Ammonia-Lyase/administration & dosage , Phenylalanine Ammonia-Lyase/genetics , Phenylketonurias/pathology , Phenylketonurias/physiopathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Tyrosine 3-Monooxygenase/immunology , Tyrosine 3-Monooxygenase/metabolism
8.
Drug Test Anal ; 9(6): 880-887, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27580591

ABSTRACT

Dextromethorphan is an N-methyl-D-aspartate (NMDA) non-competitive antagonist commonly used in human medicine as an antitussive. Dextromethorphan is metabolized in humans by cytochrome P450 2D6 into dextrorphan, which is reported to be more potent than the parent compound. The goal of this study is to describe the metabolism of and determine the pharmacokinetics of dextromethorphan and its major metabolites following oral administration to horses. A total of 23 horses received a single oral dose of 2 mg/kg. Blood samples were collected at time 0 and at various times up to 96 h post drug administration. Urine samples were collected from 12 horses up to 120 h post administration. Plasma and urine samples were analyzed using liquid chromatography-mass spectrometry, and the resulting data analyzed using non-compartmental analysis. The Cmax , Tmax , and the t1/2 of dextromethorphan were 519.4 ng/mL, 0.55 h, and 12.4 h respectively. The area under the curve of dextromethorphan, free dextrorphan, and conjugated dextrorphan were 563.8, 2.19, and 6,691 h*ng/mL respectively. In addition to free and glucuronidated dextrorphan, several additional glucuronide metabolites were identified in plasma, including hydroxyl-desmethyl dextrorphan, desmethyl dextrorphan, and three forms of hydroxylated dextrorphan. Dextromethorphan was found to be eliminated from the urine predominately as the O-demethylated metabolite, dextrorphan. Several additional metabolites including several novel hydroxy-dextrorphan metabolites were also detected in the urine in both free and glucuronidated forms. No significant undesirable behavioural effects were noted throughout the duration of the study. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Dextromethorphan/blood , Dextromethorphan/urine , Excitatory Amino Acid Antagonists/blood , Excitatory Amino Acid Antagonists/urine , Horses/blood , Horses/urine , Administration, Oral , Animals , Antitussive Agents/administration & dosage , Antitussive Agents/blood , Antitussive Agents/metabolism , Antitussive Agents/urine , Chromatography, Liquid/methods , Dextromethorphan/administration & dosage , Dextromethorphan/metabolism , Dextrorphan/blood , Dextrorphan/metabolism , Dextrorphan/urine , Drug Monitoring/methods , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/metabolism , Female , Glucuronides/blood , Glucuronides/metabolism , Glucuronides/urine , Horses/metabolism , Male , Mass Spectrometry/methods
9.
Phys Rev Lett ; 117(13): 136801, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715106

ABSTRACT

The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter Δ through the ultrafast phase transition and show that Δ is governed by the transient temperature of the thermalized electron gas, in a mean field description. The complete destruction of SDW order on a sub-100 fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly nonadiabatic regime of ultrafast photoexcitation.

10.
Am J Vet Res ; 77(9): 1029-35, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27580115

ABSTRACT

OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-ß-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Debrisoquin/metabolism , Dextromethorphan/metabolism , Horses/genetics , Polymorphism, Single Nucleotide , Animals , Cytochrome P-450 Enzyme System/metabolism , Debrisoquin/analogs & derivatives , Female , Horses/metabolism , Isoenzymes/genetics , Male
11.
Mar Pollut Bull ; 113(1-2): 75-80, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27609235

ABSTRACT

Quantification of plastic ingestion across a range of seabirds is required to assess the prevalence of plastics in marine food webs. We quantified plastic ingestion in beached Dovekies (Alle alle), following a wreck in Newfoundland, Canada. Of 171 birds, 30.4% had ingested plastic (mean 0.81±0.30 SE pieces per bird, mass 0.005±0.002 SE g per bird). Most plastics were fragments of polyethylene and polypropylene. Surprisingly, 37% were burned or melted, indicating a previously unreported source of ingested plastics (incinerated waste). We found no relationship between plastic ingestion and age, sex or body condition. By comparing our results with a similar nearby study, we illustrate the need for researchers to adopt standardized methods for plastic ingestion studies. We underline the importance of using histological techniques to reliably identify gastric pathologies, and advise caution when inferring population level trends in plastic ingestion from studies of emaciated, wrecked birds.


Subject(s)
Charadriiformes/metabolism , Environmental Monitoring/methods , Gastrointestinal Contents/chemistry , Plastics/analysis , Water Pollutants/metabolism , Animals , Birds , Canada , Eating , Food Chain , Newfoundland and Labrador , Plastics/metabolism , Water Pollutants/analysis
12.
Nat Commun ; 6: 8262, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26355196

ABSTRACT

The Heisenberg-Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale.

13.
Rev Sci Instrum ; 84(7): 075106, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23902105

ABSTRACT

We present a table top setup for time- and angle-resolved photoelectron spectroscopy to investigate band structure dynamics of correlated materials driven far from equilibrium by femtosecond laser pulse excitation. With the electron-phonon equilibration time being in the order of 1-2 ps it is necessary to achieve sub-picosecond time resolution. Few techniques provide both the necessary time and energy resolution to map non-equilibrium states of the band structure. Laser-driven high-order harmonic generation is such a technique. In our experiment, a grating monochromator delivers tunable photon energies up to 40 eV. A photon energy bandwidth of 150 meV and a pulse duration of 100 fs FWHM allow us to cover the k-space necessary to map valence bands at different kz and detect outer core states.

14.
Ecol Evol ; 2(7): 1712-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22957175

ABSTRACT

Increases in the frequency, duration, and severity of regional drought pose major threats to the health and integrity of downstream ecosystems. During 2007-2008, the U.S. southeast experienced one of the most severe droughts on record. Drought and water withdrawals in the upstream watershed led to decreased freshwater input to Apalachicola Bay, Florida, an estuary that is home to a diversity of commercially and ecologically important organisms. This study applied a combination of laboratory experiments and field observations to investigate the effects of reduced freshwater input on Apalachicola oysters. Oysters suffered significant disease-related mortality under high-salinity, drought conditions, particularly during the warm summer months. Mortality was size-specific, with large oysters of commercially harvestable size being more susceptible than small oysters. A potential salinity threshold was revealed between 17 and 25 ppt, where small oysters began to suffer mortality, and large oysters exhibited an increase in mortality. These findings have important implications for watershed management, because upstream freshwater releases could be carefully timed and allocated during stressful periods of the summer to reduce disease-related oyster mortality. Integrated, forward-looking water management is needed, particularly under future scenarios of climate change and human population growth, to sustain the valuable ecosystem services on which humans depend.

15.
Appl Physiol Nutr Metab ; 36(5): 598-607, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21888528

ABSTRACT

It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally associated with the metabolic demands of exercise. Perturbations in mitochondrial content and (or) function have been linked to a wide variety of diseases, in multiple tissues, and exercise may serve as a potent approach by which to prevent and (or) treat these pathologies. In this context, the purpose of this review is to highlight the effects of exercise, and the underlying mechanisms therein, on the induction of mitochondrial biogenesis in skeletal muscle, adipose tissue, liver, brain, and kidney.


Subject(s)
Adipose Tissue/metabolism , Exercise , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Animals , Brain/metabolism , Humans , Kidney/metabolism , Liver/metabolism , Mitochondria, Muscle/metabolism , Organ Specificity , Signal Transduction
16.
Am J Physiol Heart Circ Physiol ; 301(2): H469-77, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21602475

ABSTRACT

The AMP-activated protein kinase (AMPK) is known to increase cardiac insulin sensitivity on glucose uptake. AMPK also inhibits the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) pathway. Once activated by insulin, mTOR/p70S6K phosphorylates insulin receptor substrate-1 (IRS-1) on serine residues, resulting in its inhibition and reduction of insulin signaling. AMPK was postulated to act on insulin by inhibiting this mTOR/p70S6K-mediated negative feedback loop. We tested this hypothesis in cardiomyocytes. The stimulation of glucose uptake by AMPK activators and insulin correlated with AMPK and protein kinase B (PKB/Akt) activation, respectively. Both treatments induced the phosphorylation of Akt substrate 160 (AS160) known to control glucose uptake. Together, insulin and AMPK activators acted synergistically to induce PKB/Akt overactivation, AS160 overphosphorylation, and glucose uptake overstimulation. This correlated with p70S6K inhibition and with a decrease in serine phosphorylation of IRS-1, indicating the inhibition of the negative feedback loop. We used the mTOR inhibitor rapamycin to confirm these results. Mimicking AMPK activators in the presence of insulin, rapamycin inhibited p70S6K and reduced IRS-1 phosphorylation on serine, resulting in the overphosphorylation of PKB/Akt and AS160. However, rapamycin did not enhance the insulin-induced stimulation of glucose uptake. In conclusion, although the insulin-sensitizing effect of AMPK on PKB/Akt is explained by the inhibition of the insulin-induced negative feedback loop, its effect on glucose uptake is independent of this mechanism. This disconnection revealed that the PKB/Akt/AS160 pathway does not seem to be the rate-limiting step in the control of glucose uptake under insulin treatment.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Insulin/metabolism , Myocytes, Cardiac/drug effects , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Analysis of Variance , Animals , Cells, Cultured , Energy Metabolism/drug effects , Enzyme Activation , Enzyme Activators/pharmacology , Feedback, Physiological , GTPase-Activating Proteins/metabolism , Hypoglycemic Agents/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Male , Myocytes, Cardiac/enzymology , Oligomycins/pharmacology , Phenformin/pharmacology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
17.
Am J Physiol Endocrinol Metab ; 299(2): E145-61, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20371735

ABSTRACT

The peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) is a major regulator of exercise-induced phenotypic adaptation and substrate utilization. We provide an overview of 1) the role of PGC-1alpha in exercise-mediated muscle adaptation and 2) the possible insulin-sensitizing role of PGC-1alpha. To these ends, the following questions are addressed. 1) How is PGC-1alpha regulated, 2) what adaptations are indeed dependent on PGC-1alpha action, 3) is PGC-1alpha altered in insulin resistance, and 4) are PGC-1alpha-knockout and -transgenic mice suitable models for examining therapeutic potential of this coactivator? In skeletal muscle, an orchestrated signaling network, including Ca(2+)-dependent pathways, reactive oxygen species (ROS), nitric oxide (NO), AMP-dependent protein kinase (AMPK), and p38 MAPK, is involved in the control of contractile protein expression, angiogenesis, mitochondrial biogenesis, and other adaptations. However, the p38gamma MAPK/PGC-1alpha regulatory axis has been confirmed to be required for exercise-induced angiogenesis and mitochondrial biogenesis but not for fiber type transformation. With respect to a potential insulin-sensitizing role of PGC-1alpha, human studies on type 2 diabetes suggest that PGC-1alpha and its target genes are only modestly downregulated (< or =34%). However, studies in PGC-1alpha-knockout or PGC-1alpha-transgenic mice have provided unexpected anomalies, which appear to suggest that PGC-1alpha does not have an insulin-sensitizing role. In contrast, a modest ( approximately 25%) upregulation of PGC-1alpha, within physiological limits, does improve mitochondrial biogenesis, fatty acid oxidation, and insulin sensitivity in healthy and insulin-resistant skeletal muscle. Taken altogether, there is substantial evidence that the p38gamma MAPK-PGC-1alpha regulatory axis is critical for exercise-induced metabolic adaptations in skeletal muscle, and strategies that upregulate PGC-1alpha, within physiological limits, have revealed its insulin-sensitizing effects.


Subject(s)
Exercise/physiology , Heat-Shock Proteins/physiology , Insulin Resistance/physiology , Muscle, Skeletal/physiology , Physical Fitness/physiology , Transcription Factors/physiology , Adaptation, Physiological/physiology , Animals , Biological Transport, Active/physiology , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Lipid Metabolism/physiology , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
18.
Phys Rev Lett ; 105(20): 205003, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21231241

ABSTRACT

We report on experimental investigations into strong, laser-driven, radiative shocks in cluster media. Cylindrical shocks launched with several joules of deposited energy exhibit strong radiative effects including rapid deceleration, radiative preheat, and shell thinning. Using time-resolved propagation data from single-shot streaked Schlieren measurements, we have observed temporal modulations on the shock velocity, which we attribute to the thermal cooling instability, a process which is believed to occur in supernova remnants but until now has not been observed experimentally.

19.
J Biol Chem ; 284(24): 16522-16530, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19380575

ABSTRACT

In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r>or=0.94), fatty acid oxidation (r>or=0.88), and triacylglycerol esterification (r>or=0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.


Subject(s)
CD36 Antigens/metabolism , Fatty Acid Transport Proteins/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Animals , CD36 Antigens/genetics , Fatty Acid Transport Proteins/genetics , Fatty Acid-Binding Proteins/genetics , Female , Gene Expression/physiology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Triglycerides/metabolism
20.
Am J Physiol Endocrinol Metab ; 296(4): E738-47, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19141681

ABSTRACT

Intramuscular triacylglycerol (IMTG) accumulation in obesity has been attributed to increased fatty acid transport and/or to alterations in mitochondrial fatty acid oxidation. Alternatively, an imbalance in these two processes may channel fatty acids into storage. Therefore, in red and white muscles of lean and obese Zucker rats, we examined whether the increase in IMTG accumulation was attributable to an increased rate of fatty acid transport rather than alterations in subsarcolemmal (SS) or intermyofibrillar (IMF) mitochondrial fatty acid oxidation. In obese animals selected parameters were upregulated, including palmitate transport (red: +100%; white: +51%), plasmalemmal FAT/CD36 (red: +116%; white: +115%; not plasmalemmal FABPpm, FATP1, or FATP4), IMTG concentrations (red: approximately 2-fold; white: approximately 4-fold), and mitochondrial content (red +30%). Selected mitochondrial parameters were also greater in obese animals, namely, palmitate oxidation (SS red: +91%; SS white: +26%; not IMF mitochondria), FAT/CD36 (SS: +65%; IMF: +65%), citrate synthase (SS: +19%), and beta-hydroxyacyl-CoA dehydrogenase activities (SS: +20%); carnitine palmitoyltransferase-I activity did not differ. A comparison of lean and obese rat muscles revealed that the rate of change in IMTG concentration was eightfold greater than that of fatty acid oxidation (SS mitochondria), when both parameters were expressed relative to fatty transport. Thus fatty acid transport, esterification, and oxidation (SS mitochondria) are upregulated in muscles of obese Zucker rats, with these effects being most pronounced in red muscle. The additional fatty acid taken up is channeled primarily to esterification, suggesting that upregulation in fatty acid transport as opposed to altered fatty acid oxidation is the major determinant of intramuscular lipid accumulation.


Subject(s)
Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Palmitic Acid/metabolism , Triglycerides/metabolism , Animals , Biological Transport/physiology , Carnitine O-Palmitoyltransferase/metabolism , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/physiology , Fatty Acids/metabolism , Female , Models, Biological , Oxidation-Reduction , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...