Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Ann Oncol ; 28(12): 3028-3036, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29045535

ABSTRACT

BACKGROUND: Combination of selumetinib plus docetaxel provided clinical benefit in a previous phase II trial for patients with KRAS-mutant advanced non-small-cell lung cancer (NSCLC). The phase II SELECT-2 trial investigated safety and efficacy of selumetinib plus docetaxel for patients with advanced or metastatic NSCLC. PATIENTS AND METHODS: Patients who had disease progression after first-line anti-cancer therapy were randomized (2 : 2 : 1) to selumetinib 75 mg b.i.d. plus docetaxel 60 or 75 mg/m2 (SEL + DOC 60; SEL + DOC 75), or placebo plus docetaxel 75 mg/m2 (PBO + DOC 75). Patients were initially enrolled independently of KRAS mutation status, but the protocol was amended to include only patients with centrally confirmed KRAS wild-type NSCLC. Primary end point was progression-free survival (PFS; RECIST 1.1); statistical analyses compared each selumetinib group with PBO + DOC 75 for KRAS wild-type and overall (KRAS mutant or wild-type) populations. RESULTS: A total of 212 patients were randomized; 69% were KRAS wild-type. There were no statistically significant improvements in PFS or overall survival for overall or KRAS wild-type populations in either selumetinib group compared with PBO + DOC 75. Overall population median PFS for SEL + DOC 60, SEL + DOC 75 compared with PBO + DOC 75 was 3.0, 4.2, and 4.3 months, HRs: 1.12 (90% CI: 0.8, 1.61) and 0.92 (90% CI: 0.65, 1.31), respectively. In the overall population, a higher objective response rate (ORR; investigator assessed) was observed for SEL + DOC 75 (33%) compared with PBO + DOC 75 (14%); odds ratio: 3.26 (90% CI: 1.47, 7.95). Overall the tolerability profile of SEL + DOC was consistent with historical data, without new or unexpected safety concerns identified. CONCLUSION: The primary end point (PFS) was not met. The higher ORR with SEL + DOC 75 did not translate into prolonged PFS for the overall or KRAS wild-type patient populations. No clinical benefit was observed with SEL + DOC in KRAS wild-type patients compared with docetaxel alone. No unexpected safety concerns were reported. TRIAL IDENTIFIER: Clinicaltrials.gov NCT01750281.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/administration & dosage , Benzimidazoles/adverse effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Docetaxel , Double-Blind Method , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis , Proto-Oncogene Proteins p21(ras)/genetics , Taxoids/administration & dosage , Taxoids/adverse effects
2.
CPT Pharmacometrics Syst Pharmacol ; 6(5): 305-314, 2017 05.
Article in English | MEDLINE | ID: mdl-28326681

ABSTRACT

Selumetinib (AZD6244, ARRY-142886), a mitogen activated protein kinases (MEK1 and 2) inhibitor, has been granted orphan drug designation for differentiated thyroid cancer. The primary aim of this analysis was to characterize the population pharmacokinetics of selumetinib and its active metabolite N-desmethyl-selumetinib in patients with cancer. Concentration-time data from adult and pediatric clinical trials were pooled to develop a population pharmacokinetic model using a sequential approach where selumetinib and N-desmethyl-selumetinib data were modeled separately. A sequential zero- and first-order absorption with lag time with a two-compartment model for selumetinib and a two-compartment model for N-desmethyl-selumetinib best described the concentration-time data. Intrapatient variability in absorption was higher than interpatient variability. The apparent drug clearance (CL/F) from the central compartment was 13.5 L/hr (RSE 4.9%). Significant covariates for CL/F were age, alanine aminotransferase, and body surface area. This study confirms that flat dosing is appropriate in adults, whereas body-surface area based dosing should be used in pediatric patients.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Glioma/metabolism , Models, Biological , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Adolescent , Adult , Aged , Child , Child, Preschool , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Young Adult
3.
CPT Pharmacometrics Syst Pharmacol ; 4(9): 495-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26451328

ABSTRACT

Cancer immunotherapy (CIT) initiates or enhances the host immune response against cancer. Following decades of development, patients with previously few therapeutic options may now benefit from CIT. Although the quantitative clinical pharmacology (qCP) of previous classes of anticancer drugs has matured during this time, application to CIT may not be straightforward since CIT acts via the immune system. Here we discuss where qCP approaches might best borrow or start anew for CIT.

4.
CPT Pharmacometrics Syst Pharmacol ; 3: e144, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25353187

ABSTRACT

Treatment regimens involving obinutuzumab (GA101) demonstrated increased efficacy to rituximab in clinical trials for non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). However, the pharmacokinetic (PK) properties and the exposure-response relationships of obinutuzumab still need to be fully described. Data from four clinical trials of obinutuzumab were analyzed to describe the PK properties in patients with NHL or CLL and the pharmacodynamic (PD) properties in patients with CLL. A population PK model with linear time-dependent clearance described the obinutuzumab concentration-time course. Diagnosis, baseline tumor size (BSIZ), body weight, and gender were the main covariates affecting obinutuzumab exposure. In patients with CLL, exposure was not associated with safety but showed positive trends of correlation with efficacy. Although efficacy correlated positively with exposure, since both efficacy and exposure correlated negatively with BSIZ, it was not possible to determine with certainty whether it would be beneficial to adjust the dose according to BSIZ.

5.
Xenobiotica ; 35(6): 603-25, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16192111

ABSTRACT

The intrinsic clearances (CLint) of midazolam, triazolam, diazepam, nordiazepam, flunitrazepam and alprazolam were determined from two liver banks (n=21) by formation kinetics of ten metabolites. A literature-collated database of in vivo CLint values (811 subjects) was used to assess predictions and variability. The in vivo clearance of six benzodiazepines was generally underpredicted by in vitro data and the degree of bias was in agreement with a database of structurally diverse compounds (n=37). The variability observed for in vitro clearances (11--19--fold for midazolam, diazepam and nordiazepam in liver bank 1; 101--269--fold for triazolam, flunitrazepam and alprazolam in liver bank 2) exceeded the in vivo variability for the same compounds (4--59 and 10--29, respectively). This mismatch may contribute to the bias in microsomal predictions and it highlights the need for careful selection of representative livers for human liver banks.


Subject(s)
Benzodiazepines/pharmacokinetics , Microsomes, Liver/metabolism , Benzodiazepines/metabolism , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Genetic Variation , Humans , Kinetics , Metabolic Clearance Rate , Predictive Value of Tests
6.
Xenobiotica ; 32(11): 937-47, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12487724

ABSTRACT

1. The aim was to compare the metabolic activity of human CYP3A4 expressed in bacteria (E. coli), yeast (S. cerevisiae) and human lymphoblastoid cells (hBl), with the native CYP3A4 activity observed in a panel of human livers. 2. Three CYP3A4 substrates were selected for study: dextromethorphan (DEM), midazolam (MDZ) and diazepam (DZ). The substrate metabolism in each of the four systems was characterized by deriving the kinetic parameters K(m) or S(50), V(max) and intrinsic clearance (CL(int)) or maximum clearance (CL(max)) from the kinetic profiles; the latter differing by 100-fold across the three substrates. 3. The K(m) or S(50) for the formation of metabolites 3-methoxymorphinan (MEM), 1'-hydroxymidazolam (1'-OH MDZ) and 3-hydroxydiazepam (3HDZ) compared well in all systems. For CYP3A4-mediated metabolism of DEM, MDZ and DZ, the V(max) for hBl microsomes were generally 2-9-fold higher than the respective yeast and human liver microsomes and E. coli membrane preparations, resulting in greater CL(int) or CL(max). In the case of 3HDZ formation, non-linear kinetics were observed for E. coli, hBl microsomes and human liver microsomes, whereas the kinetics observed for S. cerevisiae were linear. 4. The use of native human liver microsomes for drug metabolic studies will always be preferable. However, owing to the limited availability of human tissues, we find it is reasonable to use any of the recombinant systems described herein, since all three recombinant systems gave good predictions of the native human liver enzyme activities.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Escherichia coli/enzymology , Lymphocytes/enzymology , Saccharomyces cerevisiae/enzymology , Adult , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP3A , Dextromethorphan/pharmacology , Diazepam/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA Modulators/pharmacology , Humans , Kinetics , Liver/pathology , Male , Microsomes, Liver/metabolism , Midazolam/pharmacology , Middle Aged , Protein Binding , Recombinant Proteins/metabolism , Substrate Specificity , Temazepam/pharmacology
7.
Xenobiotica ; 31(8-9): 539-56, 2001.
Article in English | MEDLINE | ID: mdl-11569525

ABSTRACT

1. Enzyme induction has traditionally been studied during drug development to assess the potential of drug entities to interact with concomitant medications and alter their pharmacological effects, and clearly it is an unwanted phenomenon. However, another hurdle caused by induction occurs during preclinical development via the attainment of safety data, obtained by dosing high quantities of compound to species used in toxicology assessment. This review considers the techniques that can now be utilized in drug discovery, their relevance, the pharmacokinetic aspects of this phenomenon, and it discusses the consequences and implications of induction during preclinical and clinical development. 2. It is becoming increasingly routine to employ hepatocyte cultures and novel techniques such as quantitative real-time reverse transcriptase PCR to identify enzyme inducers in vitro. The major challenge is to utilize these in vitro data to predict the consequences of induction in vivo. From an understanding of pharmacokinetic principles and low clinical doses relative to preclinical studies, there is limited potential for induction by a development candidate to significantly alter the pharmacological efficacy of a co-administered drug. 3. The most comprehensive approach when considering induction involves integrating quantitative in vitro data, information on the pharmacokinetic behaviour of the compound and the PK/PD) relationship in order to predict its consequences. The generation of this holistic strategy would enable more detailed and informed decision-making about both the suitability of molecules for development and the development strategy itself.


Subject(s)
Drug Design , Enzyme Induction/drug effects , Animals , Drug Evaluation, Preclinical , Drug Interactions , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , In Vitro Techniques , Models, Biological , Pharmacokinetics , Toxicology
8.
Br J Clin Pharmacol ; 47(6): 625-35, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10383540

ABSTRACT

AIMS: To assess the utility of human hepatic microsomes for predicting in vivo intrinsic clearance (CLint ) via the use of four cytochrome P450 2C9 substrates: phenytoin, tolbutamide (S)-ibuprofen (two pathways) and diclofenac, and to examine the role of exogenous albumin within the microsomal incubation. METHODS: V max, Km and CLint (defined as V max/Km ratio) were estimated under initial rate conditions for five pathways of metabolism in a bank of 15 human hepatic microsomal samples and were scaled to in vivo units using the microsomal protein index. Non-metabolic related binding in microsomes was measured for phenytoin and tolbutamide in the presence and absence of albumin. RESULTS: Microsomal CLint values differed by over two orders of magnitude, with the means ranging from 0.18 (phenytoin) to 40.70 (diclofenac) microl min-1 mg-1 microsomal protein. When these data were scaled and compared with published in vivo studies a similar rank order was obtained, however, the actual CLint tended to be underpredicted. While the in vivo unbound Km for phenytoin, 1-5 micron is substantially lower than the value determined in microsomes based on total concentrations (56 micron), correction for the in vitro binding reduces this value to 20 micron and 6 micron in the absence and presence of albumin, respectively. Similar trends were seen with tolbutamide Km. CONCLUSIONS: An appreciation of the utility of in vitro prediction can be best achieved when the range of CLint values predicted from the individual hepatic microsomal samples are compared with the range of individual in vivo CLint values reported in the literature. The degree of underprediction is less evident using the range than the mean data and no consistent advantage in adding albumin to the incubation media is apparent.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/metabolism , Steroid 16-alpha-Hydroxylase , Steroid Hydroxylases/metabolism , Cytochrome P-450 CYP2C9 , Humans , Metabolic Clearance Rate , Phenytoin/metabolism , Tolbutamide/metabolism
9.
Drug Metab Dispos ; 27(4): 526-32, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10101148

ABSTRACT

To evaluate the theory that within precision-cut liver slices intercellular transport occurs in parallel with cellular metabolism and to illustrate the constraints this places on clearance predictions, the kinetics of ethoxycoumarin O-deethylation have been determined under varying conditions of hepatic cytochrome P-450 activity. Liver slices, isolated hepatocytes, and microsomes were obtained from rats treated with the inducers phenobarbital (PB) and beta-naphthoflavone (betaNF) and the inhibitor aminobenzotriazole (ABT). In hepatocytes and microsomes, a two-site kinetic model with a high-affinity, low-capacity site and an unsaturated low-affinity, high-capacity site described the hydroxycoumarin formation data. There were marked increases in Vmax (2- to 5-fold and 50- to 70-fold for PB and betaNF, respectively) in both systems and in CLint (3- and 9-fold for PB and betaNF, respectively) in hepatocytes and substantial decreases in both parameters (3-8 and 12-23% of control, respectively) in ABT hepatocytes and microsomes. A qualitatively similar response was evident in slices obtained from livers of rats treated with phenobarbital and ABT, but although slices from betaNF livers produced high metabolic rates (comparable to slices obtained from livers of rats treated with phenobarbital), these showed a linear increase with substrate concentration without indication of a high-affinity site. The intrinsic clearance parameters were scaled to full liver capacity using hepatocellularities and microsomal recovery indices to allow direct comparison of these responses. The slice system consistently underestimated the effects of the modifiers. When compared with hepatocytes, estimates of 30, 15, and 1% for ABT, PB, and betaNF, respectively, were observed and the degree of underestimation was dependent on the magnitude of intrinsic clearance and was consistent with the above theory.


Subject(s)
Coumarins/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Liver/drug effects , Liver/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Animals , Cell Separation , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/biosynthesis , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Kinetics , Liver/enzymology , Male , Microsomes, Liver/enzymology , Phenobarbital/pharmacology , Rats , Rats, Sprague-Dawley , Triazoles/pharmacology , beta-Naphthoflavone/pharmacology
10.
Drug Metab Dispos ; 26(3): 216-21, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9492383

ABSTRACT

The pharmacokinetics of ethoxycoumarin have been characterized using steady-state plasma concentrations achieved after administration of this compound, at a series of infusion rates, into the hepatic portal vein of rats. The clearance of ethoxycoumarin could be described by a one-site Michaelis-Menten kinetic model with Vmax and unbound KM values of 495 nmol/min/standard rat weight (SRW) and 3.6 microM, respectively, and an intrinsic clearance (CLint, Vmax/KM ratio) of 137 ml/min/SRW (where SRW is 250 g). Urinary excretion experiments, using both ethoxycoumarin and hydroxycoumarin, demonstrated that 7-hydroxycoumarin, the metabolite frequently measured in in vitro studies, accounted for 26% of the metabolism of ethoxycoumarin. In vitro studies with hepatic microsomes and isolated hepatocytes were undertaken to characterize the kinetics of both hydroxycoumarin formation and ethoxycoumarin depletion and to compare the utility of these methods for predicting in vivo clearance. In both in vitro systems, hydroxycoumarin formation displayed biphasic kinetics, with a high-affinity/low-capacity component (with Vmax, KM, and CL1 terms) and a low-affinity/high-capacity component (with a CL2 term) that was not saturated over the substrate concentration range studied (0.5-100 microM). The use of scaling factors to relate in vitro and in vivo data showed that, although microsomal and hepatocyte Vmax values were comparable (26 and 17 nmol/min/SRW, respectively), both were substantially lower than the in vivo value. However, scaling of the in vitro CLint values, by taking into account the fraction of ethoxycoumarin metabolized to hydroxycoumarin, yielded in vivo predictions of 127 and 122 ml/min/SRW (representing 93 and 89% of the observed CLint value) for microsomes and hepatocytes, respectively. The depletion of ethoxycoumarin (1-1.5 microM) with time in both microsomes and hepatocytes displayed a monoexponential decline and predicted in vivo CLint values of 53 and 117 ml/min/SRW (representing 39 and 85% of the observed value), respectively. Therefore, both in vitro systems can accurately predict ethoxycoumarin CLint values using hydroxycoumarin formation rates, providing the importance of this pathway in total clearance is taken into account. Moreover, these results demonstrate that, even when the complete metabolic fate of the compound under investigation is unknown, isolated hepatocytes can be successfully used to predict in vivo CLint values by measurement of substrate depletion with time.


Subject(s)
Coumarins/pharmacokinetics , Microsomes, Liver/metabolism , Animals , Cells, Cultured , Coumarins/blood , Kinetics , Male , Metabolic Clearance Rate/physiology , Rats , Rats, Sprague-Dawley , Umbelliferones/pharmacokinetics , Umbelliferones/urine
11.
Drug Metab Dispos ; 25(8): 903-11, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9280396

ABSTRACT

Microsomal protein recovery and hepatocellularity have been determined and investigated as scaling factors for interrelating clearance by hepatic microsomes, freshly isolated hepatocytes and whole liver from untreated (UT) rats and rats treated with either the cytochrome P450 inducer phenobarbital (PB) or dexamethasone (DEX). Hepatocellularity in UT rats (1.1 x 10(8) hepatocytes/g liver) was not significantly different after either PB or DEX induction (1.1 and 1.3 x 10(8) hepatocytes/g liver, respectively). However the microsomal protein recovery index, which provides a scaling factor that is inversely related to the efficiency of the microsomal preparation procedure, was 47 mg/g liver in both PB and DEX microsomes and differs from UT rats (60 mg/g liver). These contrasting findings are consistent with the interlaboratory trends in the literature, indicating that, although hepatocellularity estimates are in good accord, microsomal recovery can vary 2-fold; this has implications for scaling. The oxidation of diazepam to its three primary metabolites was measured in PB and DEX microsomes and hepatocytes and the scaling factors were applied to these data and previously reported UT data. Marked changes in kinetics occur on induction resulting in a shift in the major pathway. In particular, 3-hydroxylation is induced over 20-fold by DEX. Diazepam CL(int) was determined in vivo after administration of a bolus dose into the hepatic portal vein of UT, PB, and DEX rats; values of 127, 191, and 323 ml/min/SRW (where SRW is a standard rat weight of 250 g), respectively, were obtained. Using these scaling factors, the hepatocyte predictions of CL(int) were excellent (99, 144, and 297 ml/min/SRW for UT, PB, and DEX, respectively), whereas only the DEX prediction (248 ml/min/SRW) was accurate for the microsomal system, with a substantial underprediction for UT and PB (46 and 68 ml/min/SRW, respectively). Evidence is presented for product inhibition, resulting from accumulation of primary metabolites within the microsomal preparation, as the mechanism responsible for this underprediction. These results illustrate that the scaling factor approach is applicable to induced livers in which both cytochrome P450 complement and zonal distribution are altered. These data, together with our previous studies, demonstrate that CL(int) in cells (2.4-297 ml/min/SRW), microsomes (2.7-248 ml/min/SRW), and in vivo (1.5-323 ml/min/SRW) are related in a linear fashion and hence inherently both in vitro systems are of equal value in predicting in vivo CL(int).


Subject(s)
Diazepam/metabolism , Liver/metabolism , Microsomes, Liver/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Diazepam/pharmacokinetics , Liver/cytology , Liver/enzymology , Male , Microsomes, Liver/enzymology , Rats , Rats, Sprague-Dawley
13.
Toxicol In Vitro ; 11(5): 473-8, 1997 Oct.
Article in English | MEDLINE | ID: mdl-20654337

ABSTRACT

The liver poses particular problems in constructing physiologically-based pharmacokinetic models since this organ is not only a distribution site for drugs/chemicals but frequently the major site of metabolism. The impact of hepatic drug metabolism in modelling is substantial and it is crucial to the success of the model that in vitro data on biotransformation be incorporated in a judicious manner. The value of in vitro/in vivo extrapolation is clearly demonstrated by considering kinetic data from incubations with freshly isolated hepatocytes. The determination of easily measurable in vitro parameters, such as V(max) and K(m), from initial rate studies and scaling to the in vivo situation by accounting for hepatocellularity provides intrinsic clearance estimates. A scaling factor of 1200 x 10(6) cells per 250 g rat has proved to be a robust parameter independent of laboratory technique and insensitive to animal pretreatment. Similar procedures can also be adopted for other in vitro systems such as hepatic microsomes and liver slices. An appropriate scaling factor for microsomal studies is the microsomal recovery index which allows for the incomplete recovery of cytochrome P-450 with standard differential centrifugation of liver homogenates. The hepatocellularity of a liver slice has been unsatisfactory in scaling kinetic parameters from liver slices. The level of success varies from drug to drug and substrate diffusion is a competing process to metabolism within the slice incubation system; hence, low clearance drugs are better predicted than high clearance drugs. The use of three liver models (venous-equilibration, undistributed sinusoidal and dispersion models) have been compared to predict hepatic clearance from in vitro intrinsic clearance values. As no consistent advantage of one model over the others could be demonstrated, the simplest, the venous-equilibration model, is adequate for the currently available data in hepatocytes. While these successes are encouraging as they establish the fidelity of in vitro systems for in vivo prediction, the level of success varies from drug to drug. It is important to address the reasons for failure of prediction by each in vitro system and it is noteworthy that the current approach simplifies several key issues.

14.
Xenobiotica ; 25(9): 907-16, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8553684

ABSTRACT

1. The rates of diazepam (DZ) metabolism to the primary metabolites 3-hydroxydiazepam, 4'-hydroxydiazepam and nordiazepam were studied in vitro using rat hepatic microsomes and hepatocytes. 4'-hydroxydiazepam had the largest intrinsic clearance (Vmax/Km ratio, CL(int)) in both microsomes and hepatocytes representing 49 and 70% of total metabolism respectively. Whereas the contribution of 3-hydroxydiazepam was similar in both systems (21-24%), the N-demethylation pathway was greater in microsomes (27%) than hepatocytes (9%). 2. The pharmacokinetics of DZ were determined in vivo using the intraportal route to avoid blood flow limitations due to the high clearance of DZ. No dose dependency was observed in either clearance or steady state volume of distribution, which were estimated to be 38 ml/min/SRW (where SRW is a standard rat weight of 250 g) and 1.3 L/SRW respectively. Blood binding of DZ was concentration independent, the unbound fraction being 0.22. 3. Scaling factors were used to relate the in vitro CL(int) to the in vivo unbound clearance. Hepatocytes (123 ml/min/SRW) produced a more realistic prediction for the in vivo value (174 ml/min/SRW) than microsomes (41 ml/min/SRW). This situation is believed to arise from the quantitative differences in the three metabolic pathways in the two in vitro systems. It is speculated that end product inhibition is responsible for reduced total metabolism in microsomes whereas hepatocytes operate kinetically in a manner close to in vivo.


Subject(s)
Anti-Anxiety Agents/metabolism , Diazepam/metabolism , Liver/metabolism , Microsomes, Liver/metabolism , Animals , Anti-Anxiety Agents/pharmacokinetics , Cells, Cultured , Diazepam/pharmacokinetics , Dose-Response Relationship, Drug , Male , Rats , Rats, Sprague-Dawley
15.
J Pharmacol Exp Ther ; 274(2): 761-6, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7636740

ABSTRACT

The kinetics of oxidation of phenytoin and tolbutamide were determined in freshly isolated hepatocytes and hepatic microsomes from male Sprague-Dawley rats. Similar enzyme kinetic models are applicable to the data from both in vitro systems; a two-site model for phenytoin with a high affinity (Km = 1-5 microM, based on unbound drug concentration), low capacity site and a low affinity, high capacity site, and a one-site model for tolbutamide. Steady-state infusion studies were performed to characterize the Michaelis-Menten parameters for phenytoin disposition in vivo, these data could also be described by a two-site metabolism model (Km 1.3 microM, intrinsic clearance 62 ml/min for unbound drug for the high affinity site). Comparison of in vivo and in vitro parameters (after scaling the latter parameters for either hepatocyte yield or microsomal recovery) showed excellent prediction of in vivo clearance of unbound drug from hepatocyte data (55 ml/min) but underprediction from microsomal data (17 ml/min). In contrast to phenytoin, the in vivo clearance of tolbutamide (1.5 ml/min for unbound drug) was equally well predicted by both hepatocyte (2.4 ml/min) and microsomal (3.1 ml/min) studies. The difference between the utility of in vitro systems to predict the in vivo clearance of these two drugs, which show similar pharmacrokinetic properties (low clearance restricted to unbound drug concentration in blood), may be a consequence of the particular terminal metabolite formed in each in vitro system.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Liver/metabolism , Microsomes, Liver/metabolism , Phenytoin/pharmacokinetics , Tolbutamide/pharmacokinetics , Animals , Liver/cytology , Male , Metabolic Clearance Rate , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL