Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Brain Behav Immun ; 119: 807-817, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710339

ABSTRACT

Understanding the psychiatric symptoms of Alzheimer s disease (AD) is crucial for advancing precision medicine and therapeutic strategies. The relationship between AD behavioral symptoms and asymmetry in spatial tau PET patterns is not well-known. Braak tau progression implicates the temporal lobes early. However, the clinical and pathological implications of temporal tau laterality remain unexplored. This cross-sectional study investigated the correlation between temporal tau PET asymmetry and behavior assessed using the neuropsychiatric inventory and composite scores for memory, executive function, and language, using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. In the entire cohort, continuous right and left temporal tau contributions to behavior and cognition were evaluated, controlling for age, sex, education, and tau burden on the contralateral side. Additionally, a temporal tau laterality index was calculated to define "asymmetry-extreme" groups (individuals with laterality indices greater than two standard deviations from the mean). 695 individuals (age = 73.9 ± 7.6 years, 372 (53.5 %) females) were included, comprising 281 (40%) cognitively unimpaired (CU) amyloid negative, 185 (27%) CU amyloid positive, and 229 (33%) impaired (CI) amyloid positive participants. In the full cohort analysis, right temporal tau was associated with worse behavior (B = 8.14, p-value = 0.007), and left temporal tau was associated with worse language (B = 1.4, p-value < 0.001). Categorization into asymmetry-extreme groups revealed 20 right- and 27 left-asymmetric participants. Within these extreme groups, there was additional heterogeneity along the anterior-posterior dimension. Asymmetrical tau burden is associated with distinct behavioral and cognitive profiles. Wide multi-cultural implementation of social cognition measures is needed to understand right-sided asymmetry in AD.

2.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585744

ABSTRACT

Microstructural tissue organization underlies the complex connectivity of the brain and controls properties of connective, muscle, and epithelial tissue. However, discerning microstructural architecture with high resolution for large fields of view remains prohibitive. We address this challenge with computational scattered light imaging (ComSLI), which exploits the anisotropic light scattering of aligned structures. Using a rotating lightsource and a high-resolution camera, ComSLI determines fiber architecture with micrometer resolution from histological sections across preparation and staining protocols. We show complex fiber architecture in brain and non-brain sections, including histological paraffin-embedded sections with various stains, and demonstrate its applicability on animal and human tissue, including disease cases with altered microstructure. ComSLI opens new avenues for investigating fiber architecture in new and archived sections across organisms, tissues, and diseases.

3.
JACS Au ; 3(12): 3297-3310, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38155640

ABSTRACT

Chronic innate immune activation is a key hallmark of many neurological diseases and is known to result in the upregulation of GPR84 in myeloid cells (macrophages, microglia, and monocytes). As such, GPR84 can potentially serve as a sensor of proinflammatory innate immune responses. To assess the utility of GPR84 as an imaging biomarker, we synthesized 11C-MGX-10S and 11C-MGX-11Svia carbon-11 alkylation for use as positron emission tomography (PET) tracers targeting this receptor. In vitro experiments demonstrated significantly higher binding of both radiotracers to hGPR84-HEK293 cells than that of parental control HEK293 cells. Co-incubation with the GPR84 antagonist GLPG1205 reduced the binding of both radiotracers by >90%, demonstrating their high specificity for GPR84 in vitro. In vivo assessment of each radiotracer via PET imaging of healthy mice illustrated the superior brain uptake and pharmacokinetics of 11C-MGX-10S compared to 11C-MGX-11S. Subsequent use of 11C-MGX-10S to image a well-established mouse model of systemic and neuro-inflammation revealed a high PET signal in affected tissues, including the brain, liver, lung, and spleen. In vivo specificity of 11C-MGX-10S for GPR84 was confirmed by the administration of GLPG1205 followed by radiotracer injection. When compared with 11C-DPA-713-an existing radiotracer used to image innate immune activation in clinical research studies-11C-MGX-10S has multiple advantages, including its higher binding signal in inflamed tissues in the CNS and periphery and low background signal in healthy saline-treated subjects. The pronounced uptake of 11C-MGX-10S during inflammation, its high specificity for GPR84, and suitable pharmacokinetics strongly support further investigation of 11C-MGX-10S for imaging GPR84-positive myeloid cells associated with innate immune activation in animal models of inflammatory diseases and human neuropathology.

4.
medRxiv ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37986964

ABSTRACT

Understanding psychiatric symptoms in Alzheimer`s disease (AD) is crucial for advancing precision medicine and therapeutic strategies. The relationship between AD behavioral symptoms and asymmetry in spatial tau PET patterns is unknown. Braak tau progression implicates the temporal lobes early. However, the clinical and pathological implications of temporal tau laterality remain unexplored. This cross-sectional study investigated the correlation between temporal tau PET asymmetry and behavior assessed using the neuropsychiatric inventory, and composite scores for memory, executive function, and language; using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. In the entire cohort, continuous right and left temporal tau contributions to behavior and cognition were evaluated controlling for age, sex, education, and tau burden on the contralateral side. Additionally, a temporal tau laterality index was calculated to define "asymmetry-extreme" groups (individuals with laterality indices greater than two standard deviations from the mean). 858 individuals (age=73.9±7.7 years, 434(50%) females) were included, comprising 438 cognitively unimpaired (CU) (53.4%) and 420 impaired (CI) participants (48.9%). In the full cohort analysis, right temporal tau was associated with worse behavior (B(SE)=7.19 (2.9), p-value=0.01) and left temporal tau was associated with worse language (B(SE)=1.4(0.2), p-value<0.0001). Categorization into asymmetry-extreme groups revealed 20 right- and 27 left-asymmetric participants. Within these extreme groups, four patterns of tau PET uptake were observed: anterior temporal, typical AD, typical AD with frontal involvement, and posterior. Asymmetrical tau burden is associated with distinct behavioral and cognitive profiles. Behavioral and socioemotional measures are needed to understand right-sided asymmetry in AD.

5.
Mol Imaging Biol ; 25(6): 1063-1072, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735280

ABSTRACT

PURPOSE: Innate immune activation plays a critical role in the onset and progression of many diseases. While positron emission tomography (PET) imaging provides a non-invasive means to visualize and quantify such immune responses, most available tracers are not specific for innate immune cells. To address this need, we developed [18F]OP-801 by radiolabeling a novel hydroxyl dendrimer that is selectively taken up by reactive macrophages/microglia and evaluated its ability to detect innate immune activation in mice following lipopolysaccharide (LPS) challenge. PROCEDURES: OP-801 was radiolabeled in two steps: [18F]fluorination of a tosyl precursor to yield [18F]3-fluoropropylazide, followed by a copper-catalyzed click reaction. After purification and stability testing, [18F]OP-801 (150-250 µCi) was intravenously injected into female C57BL/6 mice 24 h after intraperitoneal administration of LPS (10 mg/kg, n=14) or saline (n=6). Upon completing dynamic PET/CT imaging, mice were perfused, and radioactivity was measured in tissues of interest via gamma counting or autoradiography. RESULTS: [18F]OP-801 was produced with >95% radiochemical purity, 12-52 µCi/µg specific activity, and 4.3±1.5% decay-corrected yield. Ex vivo metabolite analysis of plasma samples (n=4) demonstrated high stability in mice (97±3% intact tracer >120 min post-injection). PET/CT images of mice following LPS challenge revealed higher signal in organs known to be inflamed in this context, including the liver, lung, and spleen. Gamma counting confirmed PET findings, showing significantly elevated signal in the same tissues compared to saline-injected mice: the liver (p=0.009), lung (p=0.030), and spleen (p=0.004). Brain PET/CT images (summed 50-60 min) revealed linearly increasing [18F]OP-801 uptake in the whole brain that significantly correlated with murine sepsis score (r=0.85, p<0.0001). Specifically, tracer uptake was significantly higher in the brain stem, cortex, olfactory bulb, white matter, and ventricles of LPS-treated mice compared to saline-treated mice (p<0.05). CONCLUSION: [18F]OP-801 is a promising new PET tracer for sensitive and specific detection of activated macrophages and microglia that warrants further investigation.


Subject(s)
Dendrimers , Positron Emission Tomography Computed Tomography , Female , Mice , Animals , Lipopolysaccharides , Mice, Inbred C57BL , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Immunity, Innate
7.
ACS Chem Neurosci ; 14(13): 2416-2424, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37310119

ABSTRACT

Positron emission tomography (PET) is a powerful tool for studying neuroinflammatory diseases; however, current PET biomarkers of neuroinflammation possess significant limitations. We recently reported a promising dendrimer PET tracer ([18F]OP-801), which is selectively taken up by reactive microglia and macrophages. Here, we describe further important characterization of [18F]OP-801 in addition to optimization and validation of a two-step clinical radiosynthesis. [18F]OP-801 was found to be stable in human plasma for 90 min post incubation, and human dose estimates were calculated for 24 organs of interest; kidneys and urinary bladder wall without bladder voiding were identified as receiving the highest absorbed dose. Following optimization detailed herein, automated radiosynthesis and quality control (QC) analyses of [18F]OP-801 were performed in triplicate in suitable radiochemical yield (6.89 ± 2.23% decay corrected), specific activity (37.49 ± 15.49 GBq/mg), and radiochemical purity for clinical imaging. Importantly, imaging mice with tracer (prepared using optimized methods) 24 h following the intraperitoneal injection of liposaccharide resulted in the robust brain PET signal. Cumulatively, these data enable clinical translation of [18F]OP-801 for imaging reactive microglia and macrophages in humans. Data from three validation runs of the clinical manufacturing and QC were submitted to the Food and Drug Administration (FDA) as part of a Drug Master File (DMF). Subsequent FDA approval to proceed was obtained, and a phase 1/2 clinical trial (NCT05395624) for first-in-human imaging in healthy controls and patients with amyotrophic lateral sclerosis is underway.


Subject(s)
Microglia , Positron-Emission Tomography , Animals , Humans , Mice , Brain , Fluorine Radioisotopes/chemistry , Macrophages , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic
8.
Nucl Med Biol ; 114-115: 143-150, 2022.
Article in English | MEDLINE | ID: mdl-35680502

ABSTRACT

INTRO: Chronic neuroinflammation and microglial dysfunction are key features of many neurological diseases, including Alzheimer's Disease and multiple sclerosis. While there is unfortunately a dearth of highly selective molecular imaging biomarkers/probes for studying microglia in vivo, P2Y12R has emerged as an attractive candidate PET biomarker being explored for this purpose. Importantly, P2Y12R is selectively expressed on microglia in the CNS and undergoes dynamic changes in expression according to inflammatory context (e.g., toxic versus beneficial/healing states), thus having the potential to reveal functional information about microglia in living subjects. Herein, we identified a high affinity, small molecule P2Y12R antagonist (AZD1283) to radiolabel and assess as a candidate radiotracer through in vitro assays and in vivo positron emission tomography (PET) imaging of both wild-type and total knockout mice and a non-human primate. METHODS: First, we evaluated the metabolic stability and passive permeability of non-radioactive AZD1283 in vitro. Next, we radiolabeled [11C]AZD1283 with radioactive precursor [11C]NH4CN and determined stability in formulation and human plasma. Finally, we investigated the in vivo stability and kinetics of [11C]AZD1283 via dynamic PET imaging of naïve wild-type mice, P2Y12R knockout mouse, and a rhesus macaque. RESULTS: We determined the half-life of AZD1283 in mouse and human liver microsomes to be 37 and > 160 min, respectively, and predicted passive CNS uptake with a small amount of active efflux, using a Caco-2 assay. Our radiolabeling efforts afforded [11C]AZD1283 in an activity of 12.69 ± 10.64 mCi with high chemical and radiochemical purity (>99%) and molar activity of 1142.84 ± 504.73 mCi/µmol (average of n = 3). Of note, we found [11C]AZD1283 to be highly stable in vitro, with >99% intact tracer present after 90 min of incubation in formulation and 60 min of incubation in human serum. PET imaging revealed negligible brain signal in healthy wild-type mice (n = 3) and a P2Y12 knockout mouse (0.55 ± 0.37%ID/g at 5 min post injection). Strikingly, high signal was detected in the liver of all mice within the first 20 min of administration (peak uptake = 58.28 ± 18.75%ID/g at 5 min post injection) and persisted for the remaining duration of the scan. Ex vivo gamma counting of mouse tissues at 60 min post-injection mirrored in vivo data with a mean %ID/g of 0.9% ± 0.40, 0.02% ± 0.01, and 106 ± 29.70% in the blood, brain, and liver, respectively (n = 4). High performance liquid chromatography (HPLC) analysis of murine blood and liver metabolite samples revealed a single radioactive peak (relative area under peak: 100%), representing intact tracer. Finally, PET imaging of a rhesus macaque also revealed negligible CNS uptake/binding in monkey brain (peak uptake = 0.37 Standard Uptake Values (SUV)). CONCLUSION: Despite our initial encouraging liver microsome and Caco-2 monolayer data, in addition to the observed high stability of [11C]AZD1283 in formulation and human serum, in vivo brain uptake was negligible and rapid accumulation was observed in the liver of both naïve wildtype and P2Y12R knockout mice. Liver signal appeared to be independent of both metabolism and P2Y12R expression due to the confirmation of intact tracer in this tissue for both wildtype and P2Y12R knockout mice. In Rhesus Macaque, negligible uptake of [11C]AZD1283 brain indicates a lack of potential for translation or its further investigation in vivo. P2Y12R is an extremely promising potential PET biomarker, and the data presented here suggests encouraging metabolic stability for this scaffold; however, the mechanism of liver uptake in mice should be elucidated prior to further analogue development.


Subject(s)
Positron-Emission Tomography , Animals , Humans , Mice , Macaca mulatta , Caco-2 Cells , Positron-Emission Tomography/methods , Mice, Knockout , Biomarkers
9.
Epilepsia ; 63(9): 2301-2311, 2022 09.
Article in English | MEDLINE | ID: mdl-35751514

ABSTRACT

OBJECTIVE: We explore the possibility of using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to discern microstructural abnormalities in the hippocampus indicative of mesial temporal sclerosis (MTS) at the subfield level. METHODS: We analyzed data from 57 patients with refractory epilepsy who previously underwent 3.0-T magnetic resonance imaging (MRI) including DTI as a standard part of presurgical workup. We collected information about each subject's seizure semiology, conventional electroencephalography (EEG), high-density EEG, positron emission tomography reports, surgical outcome, and available histopathological findings to assign a final diagnostic category. We also reviewed the radiology MRI report to determine the radiographic category. DTI- and NODDI-based metrics were obtained in the hippocampal subfields. RESULTS: By examining diffusion characteristics among subfields in the final diagnostic categories, we found lower orientation dispersion indices and elevated axial diffusivity in the dentate gyrus in MTS compared to no MTS. By similarly examining among subfields in the different radiographic categories, we found all diffusion metrics were abnormal in the dentate gyrus and CA1. We finally examined whether diffusion imaging would better inform a radiographic diagnosis with respect to the final diagnosis, and found that dentate diffusivity suggested subtle changes that may help confirm a positive radiologic diagnosis. SIGNIFICANCE: The results suggest that diffusion metric analysis at the subfield level, especially in dentate gyrus and CA1, maybe useful for clinical confirmation of MTS.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Diffusion Tensor Imaging/methods , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/pathology , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/surgery , Hippocampus/pathology , Humans , Sclerosis/diagnostic imaging , Sclerosis/pathology
10.
J Nucl Med ; 63(10): 1570-1578, 2022 10.
Article in English | MEDLINE | ID: mdl-35177426

ABSTRACT

Parkinson's disease (PD) is associated with aberrant innate immune responses, including microglial activation and infiltration of peripheral myeloid cells into the central nervous system (CNS). Methods to investigate innate immune activation in PD are limited and have not yet elucidated key interactions between neuroinflammation and peripheral inflammation. Translocator protein 18 kDa (TSPO) PET is a widely evaluated imaging approach for studying activated microglia and peripheral myeloid lineage cells in vivo but has yet to be fully explored in PD. Here, we investigate the utility of TSPO PET in addition to PET imaging of triggering receptor expressed on myeloid cells 1 (TREM1)-a novel biomarker of proinflammatory innate immune cells-for detecting innate immune responses in the 6-hydroxydopamine mouse model of dopaminergic neuron degeneration. Methods: C57/BL6J and TREM1 knockout mice were stereotactically injected with 6-hydroxydopamine in the left striatum; control mice were injected with saline. At day 7 or 14 after surgery, mice were administered 18F-GE-180, 64Cu-TREM1 monoclonal antibody (mAb), or 64Cu-isotype control mAb and imaged by PET/CT. Ex vivo autoradiography was performed to obtain high-resolution images of tracer binding within the brain. Immunohistochemistry was conducted to verify myeloid cell activation and dopaminergic cell death, and quantitative polymerase chain reaction and flow cytometry were completed to assess levels of target in the brain. Results: PET/CT images of both tracers showed elevated signal within the striatum of 6-hydroxydopamine-injected mice compared with those injected with saline. Autoradiography afforded higher-resolution brain images and revealed significant TSPO and TREM1 tracer binding within the ipsilateral striatum of 6-hydroxydopamine mice compared with saline mice at both 7 and 14 d after toxin. Interestingly, 18F-GE-180 enabled detection of inflammation in the brain and peripheral tissues (blood and spleen) of 6-hydroxydopamine mice, whereas 64Cu-TREM1 mAb appeared to be more sensitive and specific for detecting neuroinflammation, in particular infiltrating myeloid cells, in these mice, as demonstrated by flow cytometry findings and higher tracer binding signal-to-background ratios in brain. Conclusion: TSPO and TREM1 PET tracers are promising tools for investigating different cell types involved in innate immune activation in the context of dopaminergic neurodegeneration, thus warranting further investigation in other PD rodent models and human postmortem tissue to assess their clinical potential.


Subject(s)
Parkinson Disease , Animals , Antibodies, Monoclonal , Disease Models, Animal , Immunity, Innate , Inflammation , Mice , Mice, Knockout , Oxidopamine , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Triggering Receptor Expressed on Myeloid Cells-1
11.
Alzheimers Dement (Amst) ; 13(1): e12218, 2021.
Article in English | MEDLINE | ID: mdl-34337132

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is the most common form of dementia, characterized primarily by abnormal aggregation of two proteins, tau and amyloid beta. We assessed tau pathology and white matter connectivity changes in subfields of the hippocampus simultaneously in vivo in AD. METHODS: Twenty-four subjects were scanned using simultaneous time-of-flight 18F-PI-2620 tau positron emission tomography/3-Tesla magnetic resonance imaging and automated segmentation. RESULTS: We observed extensive tau elevation in the entorhinal/perirhinal regions, intermediate tau elevation in cornu ammonis 1/subiculum, and an absence of tau elevation in the dentate gyrus, relative to controls. Diffusion tensor imaging showed parahippocampal gyral fractional anisotropy was lower in AD and mild cognitive impairment compared to controls and strongly correlated with early tau accumulation in the entorhinal and perirhinal cortices. DISCUSSION: This study demonstrates the potential for quantifiable patterns of 18F-PI2620 binding in hippocampus subfields, accompanied by diffusion and volume metrics, to be valuable markers of AD.

12.
Med Phys ; 48(6): 3031-3041, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33880778

ABSTRACT

PURPOSE: Data-driven rigid motion estimation for PET brain imaging is usually performed using data frames sampled at low temporal resolution to reduce the overall computation time and to provide adequate signal-to-noise ratio in the frames. In recent work it has been demonstrated that list-mode reconstructions of ultrashort frames are sufficient for motion estimation and can be performed very quickly. In this work we take the approach of using image-based registration of reconstructions of very short frames for data-driven motion estimation, and optimize a number of reconstruction and registration parameters (frame duration, MLEM iterations, image pixel size, post-smoothing filter, reference image creation, and registration metric) to ensure accurate registrations while maximizing temporal resolution and minimizing total computation time. METHODS: Data from 18 F-fluorodeoxyglucose (FDG) and 18 F-florbetaben (FBB) tracer studies with varying count rates are analyzed, for PET/MR and PET/CT scanners. For framed reconstructions using various parameter combinations interframe motion is simulated and image-based registrations are performed to estimate that motion. RESULTS: For FDG and FBB tracers using 4 × 105 true and scattered coincidence events per frame ensures that 95% of the registrations will be accurate to within 1 mm of the ground truth. This corresponds to a frame duration of 0.5-1 sec for typical clinical PET activity levels. Using four MLEM iterations with no subsets, a transaxial pixel size of 4 mm, a post-smoothing filter with 4-6 mm full width at half maximum, and averaging two or more frames to create the reference image provides an optimal set of parameters to produce accurate registrations while keeping the reconstruction and processing time low. CONCLUSIONS: It is shown that very short frames (≤1 sec) can be used to provide accurate and quick data-driven rigid motion estimates for use in an event-by-event motion corrected reconstruction.


Subject(s)
Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Algorithms , Brain/diagnostic imaging , Motion , Movement , Positron-Emission Tomography , Tomography, X-Ray Computed
13.
Sci Rep ; 10(1): 12064, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694602

ABSTRACT

The medial temporal lobe is one of the most well-studied brain regions affected by Alzheimer's disease (AD). Although the spread of neurofibrillary pathology in the hippocampus throughout the progression of AD has been thoroughly characterized and staged using histology and other imaging techniques, it has not been precisely quantified in vivo at the subfield level using simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI). Here, we investigate alterations in metabolism and volume using [18F]fluoro-deoxyglucose (FDG) and simultaneous time-of-flight (TOF) PET/MRI with hippocampal subfield analysis of AD, mild cognitive impairment (MCI), and healthy subjects. We found significant structural and metabolic changes within the hippocampus that can be sensitively assessed at the subfield level in a small cohort. While no significant differences were found between groups for whole hippocampal SUVr values (p = 0.166), we found a clear delineation in SUVr between groups in the dentate gyrus (p = 0.009). Subfield analysis may be more sensitive for detecting pathological changes using PET-MRI in AD compared to global hippocampal assessment.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18 , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Aged , Alzheimer Disease/etiology , Alzheimer Disease/psychology , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Case-Control Studies , Female , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Positron-Emission Tomography/methods
14.
J Nucl Med ; 61(8): 1107-1112, 2020 08.
Article in English | MEDLINE | ID: mdl-32620705

ABSTRACT

Neuroinflammation is a key pathologic hallmark of numerous neurologic diseases, however, its exact role in vivo is yet to be fully understood. PET imaging enables investigation, quantification, and tracking of different neuroinflammation biomarkers in living subjects longitudinally. One such biomarker that has been imaged extensively using PET is translocator protein 18 kDa (TSPO). Although imaging TSPO has yielded valuable clinical data linking neuroinflammation to various neurodegenerative diseases, considerable limitations of TSPO PET have prompted identification of other more cell-specific and functionally relevant biomarkers. This review analyzes the clinical potential of available and emerging PET biomarkers of innate and adaptive immune responses, with mention of exciting future directions for the field.


Subject(s)
Inflammation/diagnostic imaging , Nervous System/diagnostic imaging , Positron-Emission Tomography/methods , Animals , Biomarkers/metabolism , Humans , Inflammation/metabolism , Nervous System/metabolism
15.
Magn Reson Med ; 84(3): 1661-1671, 2020 09.
Article in English | MEDLINE | ID: mdl-32077521

ABSTRACT

PURPOSE: Motion artifact limits the clinical translation of high-field MR. We present an optical prospective motion correction system for 7 Tesla MRI using a custom-built, within-coil camera to track an optical marker mounted on a subject. METHODS: The camera was constructed to fit between the transmit-receive coils with direct line of sight to a forehead-mounted marker, improving upon prior mouthpiece work at 7 Tesla MRI. We validated the system by acquiring a 3D-IR-FSPGR on a phantom with deliberate motion applied. The same 3D-IR-FSPGR and a 2D gradient echo were then acquired on 7 volunteers, with/without deliberate motion and with/without motion correction. Three neuroradiologists blindly assessed image quality. In 1 subject, an ultrahigh-resolution 2D gradient echo with 4 averages was acquired with motion correction. Four single-average acquisitions were then acquired serially, with the subject allowed to move between acquisitions. A fifth single-average 2D gradient echo was acquired following subject removal and reentry. RESULTS: In both the phantom and human subjects, deliberate and involuntary motion were well corrected. Despite marked levels of motion, high-quality images were produced without spurious artifacts. The quantitative ratings confirmed significant improvements in image quality in the absence and presence of deliberate motion across both acquisitions (P < .001). The system enabled ultrahigh-resolution visualization of the hippocampus during a long scan and robust alignment of serially acquired scans with interspersed movement. CONCLUSION: We demonstrate the use of a within-coil camera to perform optical prospective motion correction and ultrahigh-resolution imaging at 7 Tesla MRI. The setup does not require a mouthpiece, which could improve accessibility of motion correction during 7 Tesla MRI exams.


Subject(s)
Artifacts , Brain , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Motion , Neuroimaging , Prospective Studies
16.
J Biophotonics ; 11(2)2018 02.
Article in English | MEDLINE | ID: mdl-28800205

ABSTRACT

This study characterizes the scatter-specific tissue contrast that can be obtained by high spatial frequency (HSF) domain imaging and cross-polarization (CP) imaging, using a standard color imaging system, and how combining them may be beneficial. Both HSF and CP approaches are known to modulate the sensitivity of epi-illumination reflectance images between diffuse multiply scattered and superficially backscattered photons, providing enhanced contrast from microstructure and composition than what is achieved by standard wide-field imaging. Measurements in tissue-simulating optical phantoms show that CP imaging returns localized assessments of both scattering and absorption effects, while HSF has uniquely specific sensitivity to scatter-only contrast, with a strong suppression of visible contrast from blood. The combination of CP and HSF imaging provided an expanded sensitivity to scatter compared with CP imaging, while rejecting specular reflections detected by HSF imaging. ex vivo imaging of an atlas of dissected rodent organs/tissues demonstrated the scatter-based contrast achieved with HSF, CP and HSF-CP imaging, with the white light spectral signal returned by each approach translated to a color image for intuitive encoding of scatter-based contrast within images of tissue. The results suggest that visible CP-HSF imaging could have the potential to aid diagnostic imaging of lesions in skin or mucosal tissues and organs, where just CP is currently the standard practice imaging modality.


Subject(s)
Molecular Imaging , Scattering, Radiation , Animals , Calibration , Color , Phantoms, Imaging , Rats , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...