Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 867: 93-114, 2015.
Article in English | MEDLINE | ID: mdl-26530362

ABSTRACT

In this chapter the use of prostate specific antigen (PSA) as a tumor marker for prostate cancer is discussed. The chapter provides an overview of biological and clinical aspects of PSA. The main drawback of total PSA (tPSA) is its lack of specificity for prostate cancer which leads to unnecessary biopsies. Moreover, PSA-testing poses a risk of overdiagnosis and subsequent overtreatment. Many PSA-based markers have been developed to improve the performance characteristics of tPSA. As well as different molecular subforms of tPSA, such as proPSA (pPSA) and free PSA (fPSA), and PSA derived kinetics as PSA-velocity (PSAV) and PSA-doubling time (PSADT). The prostate health index (phi), PSA-density (PSAD) and the contribution of non PSA-based markers such as the urinary transcripts of PCA3 and TMPRSS-ERG fusion are also discussed. To enable further risk stratification tumor markers are often combined with clinical data (e.g. outcome of DRE) in so-called nomograms. Currently the role of magnetic resonance imaging (MRI) in the detection and staging of prostate cancer is being explored.


Subject(s)
Prostate-Specific Antigen/blood , Prostatic Neoplasms/diagnosis , Early Detection of Cancer , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/blood
2.
J Natl Cancer Inst ; 107(1): 366, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25505238

ABSTRACT

BACKGROUND: The results of the European Randomized Study of Screening for Prostate Cancer (ERSPC) trial showed a statistically significant 29% prostate cancer mortality reduction for the men screened in the intervention arm and a 23% negative impact on the life-years gained because of quality of life. However, alternative prostate-specific antigen (PSA) screening strategies for the population may exist, optimizing the effects on mortality reduction, quality of life, overdiagnosis, and costs. METHODS: Based on data of the ERSPC trial, we predicted the numbers of prostate cancers diagnosed, prostate cancer deaths averted, life-years and quality-adjusted life-years (QALY) gained, and cost-effectiveness of 68 screening strategies starting at age 55 years, with a PSA threshold of 3, using microsimulation modeling. The screening strategies varied by age to stop screening and screening interval (one to 14 years or once in a lifetime screens), and therefore number of tests. RESULTS: Screening at short intervals of three years or less was more cost-effective than using longer intervals. Screening at ages 55 to 59 years with two-year intervals had an incremental cost-effectiveness ratio of $73000 per QALY gained and was considered optimal. With this strategy, lifetime prostate cancer mortality reduction was predicted as 13%, and 33% of the screen-detected cancers were overdiagnosed. When better quality of life for the post-treatment period could be achieved, an older age of 65 to 72 years for ending screening was obtained. CONCLUSION: Prostate cancer screening can be cost-effective when it is limited to two or three screens between ages 55 to 59 years. Screening above age 63 years is less cost-effective because of loss of QALYs because of overdiagnosis.


Subject(s)
Biomarkers, Tumor/blood , Early Detection of Cancer/economics , Early Detection of Cancer/methods , Mass Screening/economics , Mass Screening/methods , Prostate-Specific Antigen/blood , Prostatic Neoplasms/economics , Prostatic Neoplasms/mortality , Quality of Life , Quality-Adjusted Life Years , Age Factors , Aged , Computer Simulation , Cost-Benefit Analysis , Europe , False Positive Reactions , Humans , Male , Middle Aged , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...