Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2806: 31-40, 2024.
Article in English | MEDLINE | ID: mdl-38676794

ABSTRACT

Patient-derived xenograft (PDX) modeling is a valuable tool for the study of leukemia pathogenesis, progression, and therapy response. Engraftment of human leukemia cells occurs following injection into the tail vein (or retro-orbital vein) of preconditioned immunocompromised mice. Injected mice are maintained in a sterile and supportive housing environment until leukemia engraftment is observed, at which time studies such as drug treatments or leukemia sampling can occur. Here, we outline a method for generating PDXs from Acute Myeloid Leukemia (AML) patient samples using tail vein injection; however it can also be readily applied to T- and B- Acute Lymphoblastic Leukemia (ALL) samples.


Subject(s)
Disease Models, Animal , Animals , Humans , Mice , Xenograft Model Antitumor Assays/methods , Leukemia, Myeloid, Acute/pathology , Heterografts , Leukemia/pathology
2.
Front Immunol ; 14: 1207360, 2023.
Article in English | MEDLINE | ID: mdl-37600794

ABSTRACT

The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.


Subject(s)
Hematologic Neoplasms , Leukemia , Neoplasms , Female , Pregnancy , Humans , Epithelial-Mesenchymal Transition , Neoplasms/genetics , Leukemia/genetics , Transcription Factors/genetics
3.
Blood ; 136(8): 957-973, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32369597

ABSTRACT

Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.


Subject(s)
Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/pathology , Snail Family Transcription Factors/physiology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , HEK293 Cells , HL-60 Cells , Histone Demethylases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Transgenic , Protein Binding , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
4.
Blood ; 136(6): 698-714, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32350520

ABSTRACT

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.


Subject(s)
Leukemia, Erythroblastic, Acute/genetics , Neoplasm Proteins/physiology , Transcription Factors/physiology , Transcriptome , Adult , Animals , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dioxygenases , Erythroblasts/metabolism , Erythropoiesis/genetics , Female , GATA1 Transcription Factor/deficiency , GATA1 Transcription Factor/genetics , Gene Knock-In Techniques , Genetic Heterogeneity , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Middle Aged , Mutation , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , RNA-Seq , Radiation Chimera , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/physiology , Exome Sequencing , Young Adult
5.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32208489

ABSTRACT

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute , Core Binding Factor Alpha 2 Subunit/genetics , Epigenesis, Genetic , Germ Cells , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Pedigree , Phenotype
6.
Nat Genet ; 51(4): 694-704, 2019 04.
Article in English | MEDLINE | ID: mdl-30926971

ABSTRACT

Acute erythroid leukemia (AEL) is a high-risk leukemia of poorly understood genetic basis, with controversy regarding diagnosis in the spectrum of myelodysplasia and myeloid leukemia. We compared genomic features of 159 childhood and adult AEL cases with non-AEL myeloid disorders and defined five age-related subgroups with distinct transcriptional profiles: adult, TP53 mutated; NPM1 mutated; KMT2A mutated/rearranged; adult, DDX41 mutated; and pediatric, NUP98 rearranged. Genomic features influenced outcome, with NPM1 mutations and HOXB9 overexpression being associated with a favorable prognosis and TP53, FLT3 or RB1 alterations associated with poor survival. Targetable signaling mutations were present in 45% of cases and included recurrent mutations of ALK and NTRK1, the latter of which drives erythroid leukemogenesis sensitive to TRK inhibition. This genomic landscape of AEL provides the framework for accurate diagnosis and risk stratification of this disease, and the rationale for testing targeted therapies in this high-risk leukemia.


Subject(s)
Leukemia, Erythroblastic, Acute/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genomics/methods , Homeodomain Proteins/genetics , Humans , Infant , Infant, Newborn , Male , Mutation/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , Tumor Suppressor Protein p53/genetics , Young Adult , fms-Like Tyrosine Kinase 3/genetics
7.
Cancer Cell ; 31(3): 452-465, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28292442

ABSTRACT

Chimeric transcription factors are a hallmark of human leukemia, but the molecular mechanisms by which they block differentiation and promote aberrant self-renewal remain unclear. Here, we demonstrate that the ETO2-GLIS2 fusion oncoprotein, which is found in aggressive acute megakaryoblastic leukemia, confers megakaryocytic identity via the GLIS2 moiety while both ETO2 and GLIS2 domains are required to drive increased self-renewal properties. ETO2-GLIS2 directly binds DNA to control transcription of associated genes by upregulation of expression and interaction with the ETS-related ERG protein at enhancer elements. Importantly, specific interference with ETO2-GLIS2 oligomerization reverses the transcriptional activation at enhancers and promotes megakaryocytic differentiation, providing a relevant interface to target in this poor-prognosis pediatric leukemia.


Subject(s)
Leukemia, Megakaryoblastic, Acute/pathology , Oncogene Proteins, Fusion/physiology , Transcriptional Activation , Animals , Cell Differentiation , Child , Enhancer Elements, Genetic , GATA1 Transcription Factor/genetics , Humans , Mice , Oncogene Proteins, Fusion/chemistry , Transcriptional Regulator ERG/physiology
8.
Cells Tissues Organs ; 203(2): 82-98, 2017.
Article in English | MEDLINE | ID: mdl-28214876

ABSTRACT

Snail family proteins are key inducers of the epithelial-mesenchymal transition (EMT), a critical process required for normal embryonic development. They have also been strongly implicated in regulating the EMT-like processes required for tumour cell invasion, migration, and metastasis. Whether these proteins also contribute to normal blood cell development, however, remains to be clearly defined. Increasing evidence supports a role for the Snail family in regulating cell survival, migration, and differentiation within the haematopoietic system, as well as potentially an oncogenic role in the malignant transformation of haematopoietic stem cells. This review will provide a broad overview of the Snail family, including key aspects of their involvement in the regulation and development of solid organ cancer, as well as a discussion on our current understanding of Snail family function during normal and malignant haematopoiesis.


Subject(s)
Hematologic Neoplasms/metabolism , Hematopoiesis , Snail Family Transcription Factors/metabolism , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype
9.
Proc Natl Acad Sci U S A ; 110(15): 6091-6, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23533276

ABSTRACT

To define genetic lesions driving leukemia, we targeted cre-dependent Sleeping Beauty (SB) transposon mutagenesis to the blood-forming system using a hematopoietic-selective vav 1 oncogene (vav1) promoter. Leukemias of diverse lineages ensued, most commonly lymphoid leukemia and erythroleukemia. The inclusion of a transgenic allele of Janus kinase 2 (JAK2)V617F resulted in acceleration of transposon-driven disease and strong selection for erythroleukemic pathology with transformation of bipotential erythro-megakaryocytic cells. The genes encoding the E-twenty-six (ETS) transcription factors Ets related gene (Erg) and Ets1 were the most common sites for transposon insertion in SB-induced JAK2V617F-positive erythroleukemias, present in 87.5% and 65%, respectively, of independent leukemias examined. The role of activated Erg was validated by reproducing erythroleukemic pathology in mice transplanted with fetal liver cells expressing translocated in liposarcoma (TLS)-ERG, an activated form of ERG found in human leukemia. Via application of SB mutagenesis to TLS-ERG-induced erythroid transformation, we identified multiple loci as likely collaborators with activation of Erg. Jak2 was identified as a common transposon insertion site in TLS-ERG-induced disease, strongly validating the cooperation between JAK2V617F and transposon insertion at the Erg locus in the JAK2V617F-positive leukemias. Moreover, loci expressing other regulators of signal transduction pathways were conspicuous among the common transposon insertion sites in TLS-ERG-driven leukemia, suggesting that a key mechanism in erythroleukemia may be the collaboration of lesions disturbing erythroid maturation, most notably in genes of the ETS family, with mutations that reduce dependence on exogenous signals.


Subject(s)
Gene Expression Regulation, Leukemic , Janus Kinase 2/metabolism , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Megakaryoblastic, Acute/metabolism , Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Alleles , Animals , DNA Transposable Elements , Genotype , Janus Kinase 2/genetics , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/genetics , Mice , Mice, Transgenic , Mutagenesis , Neoplasm Transplantation , Oncogene Proteins/genetics , Promoter Regions, Genetic , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Proteins c-ets/genetics , Recombination, Genetic , Sequence Analysis, DNA , Signal Transduction/genetics , Transcription Factors , Transcriptional Regulator ERG
10.
PLoS One ; 8(1): e54009, 2013.
Article in English | MEDLINE | ID: mdl-23326559

ABSTRACT

The tetracycline (tet)-regulated expression system allows for the inducible overexpression of protein-coding genes, or inducible gene knockdown based on expression of short hairpin RNAs (shRNAs). The system is widely used in mice, however it requires robust expression of a tet transactivator protein (tTA or rtTA) in the cell type of interest. Here we used an in vivo tet-regulated fluorescent reporter approach to characterise inducible gene/shRNA expression across a range of hematopoietic cell types of several commonly used transgenic tet transactivator mouse strains. We find that even in strains where the tet transactivator is expressed from a nominally ubiquitous promoter, the efficiency of tet-regulated expression can be highly variable between hematopoietic lineages and between differentiation stages within a lineage. In some cases tet-regulated reporter expression differs markedly between cells within a discrete, immunophenotypically defined population, suggesting mosaic transactivator expression. A recently developed CAG-rtTA3 transgenic mouse displays intense and efficient reporter expression in most blood cell types, establishing this strain as a highly effective tool for probing hematopoietic development and disease. These findings have important implications for interpreting tet-regulated hematopoietic phenotypes in mice, and identify mouse strains that provide optimal tet-regulated expression in particular hematopoietic progenitor cell types and mature blood lineages.


Subject(s)
Hematopoietic Stem Cells , Hematopoietic System/cytology , Tetracycline/pharmacology , Trans-Activators/metabolism , Animals , Cell Lineage/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Genes, Reporter , Green Fluorescent Proteins/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hematopoietic System/drug effects , Hematopoietic System/metabolism , Mice , Mice, Transgenic , Promoter Regions, Genetic , RNA, Small Interfering/genetics , Trans-Activators/genetics
11.
Proc Natl Acad Sci U S A ; 109(38): 15437-42, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22936051

ABSTRACT

The transcription factor encoded by the E-twenty-six (ETS)-related gene, ERG, is an essential regulator of hematopoietic stem cell function and a potent human oncoprotein. Enforced expression of ERG in murine hematopoietic cells leads to the development of a well-characterized lymphoid leukemia and a less well-defined non lymphoid disease. To clarify the latter, we generated murine bone marrow chimeras with enforced Erg expression in engrafted hematopoietic progenitor cells. As expected, these mice developed lymphoid leukemia. However, the previously reported non lymphoid disease that developed was shown to be a uniform, transplantable leukemia with both erythroid and megakaryocytic characteristics. In vivo, this disease had the overall appearance of an erythroleukemia, with an accumulation of immature erythroblasts that infiltrated the bone marrow, spleen, liver, and lung. However, when stimulated in vitro, leukemic cell clones exhibited both erythroid and megakaryocytic differentiation, suggesting that transformation occurred in a bipotential progenitor. Thus, in mice, Erg overexpression induces the development of not only lymphoid leukemia but also erythro-megakaryocytic leukemia.


Subject(s)
Leukemia, Megakaryoblastic, Acute/genetics , Leukemia/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Animals , Bone Marrow Cells/cytology , Cell Differentiation , Cell Lineage , Erythroblasts/metabolism , Flow Cytometry/methods , Gene Expression Regulation, Neoplastic , Hematopoietic Stem Cells/cytology , Leukemia/metabolism , Leukemia, Megakaryoblastic, Acute/metabolism , Mice , Mice, Inbred C57BL , Retroviridae/metabolism , Time Factors , Transcription Factors , Transcriptional Regulator ERG
12.
Nat Genet ; 43(10): 1012-7, 2011 Sep 04.
Article in English | MEDLINE | ID: mdl-21892162

ABSTRACT

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Subject(s)
GATA2 Transcription Factor/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Quantitative Trait, Heritable , Amino Acid Sequence , Animals , COS Cells , Cell Differentiation , Cell Proliferation , Chlorocebus aethiops , Chromosome Mapping , DNA, Complementary , Female , GATA2 Transcription Factor/metabolism , Genetic Predisposition to Disease , HEK293 Cells , Haplotypes , Humans , Male , Molecular Sequence Data , Pedigree , Plasmids , Polymorphism, Single Nucleotide
13.
Mamm Genome ; 22(7-8): 449-65, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21667128

ABSTRACT

Platelets are the small anuclear blood cells that are the product of megakaryocytopoiesis, the process of hematopoietic stem cell commitment to megakaryocyte production and the differentiation and maturation of these cells for platelet release. Deregulation or disruption of megakaryocytopoiesis can result in platelet deficiencies, the thrombocytopenias, with attendant risk of hemorrhage or thrombocytosis, a pathological excess of platelet numbers. Mouse models, particularly those engineered to carry genetic alterations modeling mutations associated with human disease, have provided important insights into megakaryocytopoiesis and deregulation of this process in disease. This review focuses on mouse models of diseases of altered megakaryocyte and platelet number, illustrating the profound contribution of these models in validating suspected roles of disease-associated genetic alterations, promoting discovery of new links between genetic mutations and specific diseases, and providing unique tools for better understanding of disease pathophysiology and progression, as well as resources to define drug action or develop new therapeutic strategies.


Subject(s)
Blood Platelet Disorders/physiopathology , Disease Models, Animal , Mice , Animals , Blood Platelet Disorders/drug therapy , Blood Platelet Disorders/genetics , Blood Platelets/cytology , Humans , Megakaryocytes/cytology , Mice/genetics , Mice/physiology , Thrombopoiesis
16.
Blood ; 115(19): 3966-9, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20007548

ABSTRACT

Down syndrome is characterized by multiple phenotypic manifestations associated with trisomy of chromosome 21. The transient myeloproliferative disorder and acute megakaryocytic leukemia associated with Down syndrome are uniquely associated with mutations in the transcription factor GATA1; however, the identity of trisomic genes on chromosome 21 that predispose to these hematologic disorders remains unknown. Using a loss-of-function allele, we show that specific reduction to functional disomy of the Erg gene corrects the pathologic and hematologic features of myeloproliferation in the Ts(17(16))65Dn mouse model of Down syndrome, including megakaryocytosis and progenitor cell expansion. Our data provide genetic evidence establishing the need for Erg trisomy for myeloproliferation in Ts(17(16))65Dn mice and imply that increased ERG gene dosage may be a key consequence of trisomy 21 that can predispose to malignant hematologic disorders in Down syndrome.


Subject(s)
Disease Models, Animal , Down Syndrome/genetics , Myeloproliferative Disorders/genetics , Oncogene Proteins/genetics , Trisomy/genetics , Animals , Down Syndrome/pathology , Female , Flow Cytometry , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mutation, Missense/genetics , Myeloproliferative Disorders/pathology , Transcription Factors , Transcriptional Regulator ERG , Trisomy/pathology
17.
Blood ; 113(9): 1929-37, 2009 Feb 26.
Article in English | MEDLINE | ID: mdl-19109561

ABSTRACT

Down syndrome (DS) persons are born with various hematopoietic abnormalities, ranging from relatively benign, such as neutrophilia and macrocytosis, to a more severe transient myeloproliferative disorder (TMD). In most cases, these abnormalities resolve in the first few months to years of life. However, sometimes the TMD represents a premalignant disease that develops into acute megakaryocytic leukemia (AMKL), usually in association with acquired GATA1 mutations. To gain insight into the mechanisms responsible for these abnormalities, we analyzed the hematopoietic development of the Ts1Cje mouse model of DS. Our analyses identified defects in mature blood cells, including macrocytosis and anemia, as well as abnormalities in fetal liver and bone marrow stem and progenitor cell function. Despite these defects, the Ts1Cje mice do not develop disease resembling either TMD or AMKL, and this was not altered by a loss of function allele of Gata1. Thus, loss of Gata1 and partial trisomy of chromosome 21 orthologs, when combined, do not appear to be sufficient to induce TMD or AMKL-like phenotypes in mice.


Subject(s)
Disease Models, Animal , Down Syndrome/complications , Hematologic Diseases/etiology , Aging/physiology , Animals , Bone Marrow/pathology , Cells, Cultured , Chromosomes, Human, Pair 21 , Down Syndrome/genetics , Down Syndrome/mortality , Down Syndrome/pathology , GATA1 Transcription Factor/genetics , Hematologic Diseases/genetics , Hematologic Diseases/mortality , Hematologic Diseases/pathology , Hematopoietic Stem Cells/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Spleen/pathology , Survival Analysis , Thrombocytosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...