Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Chem Neurosci ; 11(7): 1013-1026, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32176482

ABSTRACT

An innovative approach to identify new conformational antigens of Aß1-42 recognized by IgG autoantibodies as biomarkers of state and stage in Alzheimer's disease (AD) patients is described. In particular, through the use of bioinformatics modeling, conformational similarities between several Aß1-42 forms and other amyloid-like proteins with F1 capsular antigen (Caf1) of Yersinia pestis were first found. pVIII M13 phage display libraries were then screened against YPF19, anti-Caf1 monoclonal antibody, and IgGs of AD patients, in alternate biopanning cycles of a so-called "double binding" selection. From the selected phage clones, one, termed 12III1, was found to be able to prevent in vitro Aß1-42-induced cytotoxicity in SH-SY5Y cells, as well as to promote disaggregation of preformed fibrils, to a greater extent with respect to wild-type phage (pC89). IgG levels detected by 12III1 provided a significant level of discrimination between diseased and nondemented subjects, as well as a good correlation with the state progression of the disease. These results give significant impact in AD state and stage diagnosis, paving the way for the development not only for an innovative blood diagnostic assay for AD precise diagnosis, progressive clinical assessment, and screening but also for new effective treatments.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid/metabolism , Biomarkers/analysis , Immunoglobulin G/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/immunology , Bacteriophages/metabolism , Humans , Peptide Fragments/metabolism
2.
J Immunol Methods ; 465: 45-52, 2019 02.
Article in English | MEDLINE | ID: mdl-30552870

ABSTRACT

Sepsis is a systemic inflammatory response ensuing from presence and persistence of microorganisms in the bloodstream. The possibility to identify them at low concentrations may improve the problem of human health and therapeutic outcomes. So, sensitive and rapid diagnostic systems are essential to evaluate bacterial infections during the time, also reducing the cost. In this study, from random M13 phage display libraries, we selected phage clones that specifically bind surface of Staphyloccocus aureus, Pseudomonas aeruginosa and Escherichia coli. Then, commercial magnetic beads were functionalized with phage clones through covalent bond and used as capture and concentrating of pathogens from blood. We found that phage-magnetic beads complex represents a network which enables a cheap, high sensitive and specific detection of the bacteria involved in sepsis by micro-Raman spectroscopy. The enter process required 6 h and has the limit of detection of 10 Colony Forming Units on 7 ml of blood (CFU/7 ml).


Subject(s)
Bacteria , Bacteriophage M13/chemistry , Immunomagnetic Separation , Peptide Library , Sepsis , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Bacteriophage M13/immunology , Humans , Limit of Detection , Sepsis/blood , Sepsis/microbiology , Spectrum Analysis, Raman
3.
Nat Biomed Eng ; 2(2): 95-103, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29955439

ABSTRACT

Bacterial resistance to antibiotics has made it necessary to resort to antibiotics that have considerable toxicities. Here, we show that the cyclic 9-amino acid peptide CARGGLKSC (CARG), identified via phage display on Staphylococcus aureus (S. aureus) bacteria and through in vivo screening in mice with S. aureus-induced lung infections, increases the antibacterial activity of CARG-conjugated vancomycin-loaded nanoparticles in S. aureus-infected tissues and reduces the needed overall systemic dose, minimizing side effects. CARG binds specifically to S. aureus bacteria but not Pseudomonas bacteria in vitro, selectively accumulates in S. aureus-infected lungs and skin of mice but not in non-infected tissue and Pseudomonas-infected tissue, and significantly enhances the accumulation of intravenously injected vancomycin-loaded porous silicon nanoparticles bearing the peptide in S. aureus-infected mouse lung tissue. The targeted nanoparticles more effectively suppress staphylococcal infections in vivo relative to equivalent doses of untargeted vancomycin nanoparticles or of free vancomycin. The therapeutic delivery of antibiotic-carrying nanoparticles bearing peptides targeting infected tissue may help combat difficult-to-treat infections.

4.
Colloids Surf B Biointerfaces ; 157: 473-480, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28654884

ABSTRACT

Staphylococcus aureus is a major human pathogen causing health care-associated and community-associated infections. Early diagnosis is essential to prevent disease progression and to reduce complications that can be serious. In this study, we selected, from a 9-mer phage peptide library, a phage clone displaying peptide capable of specific binding to S. aureus cell surface, namely St.au9IVS5 (sequence peptide RVRSAPSSS).The ability of the isolated phage clone to interact specifically with S. aureus and the efficacy of its bacteria-binding properties were established by using enzyme linked immune-sorbent assay (ELISA). We also demonstrated by Western blot analysis that the most reactive and selective phage peptide binds a 78KDa protein on the bacterial cell surface. Furthermore, we observed selectivity of phage-bacteria-binding allowing to identify clinical isolates of S. aureus in comparison with a panel of other bacterial species. In order to explore the possibility of realizing a selective bacteria biosensor device, based on immobilization of affinity-selected phage, we have studied the physisorbed phage deposition onto a mica surface. Atomic Force Microscopy (AFM) was used to determine the organization of phage on mica surface and then the binding performance of mica-physisorbed phage to bacterial target was evaluated during the time by fluorescent microscopy. The system is able to bind specifically about 50% of S. aureus cells after 15' and 90% after one hour. Due to specificity and rapidness, this biosensing strategy paves the way to the further development of new cheap biosensors to be used in developing countries, as lab-on-chip (LOC) to detect bacterial agents in clinical diagnostics applications.


Subject(s)
Biosensing Techniques/methods , Peptide Library , Staphylococcus aureus , Enzyme-Linked Immunosorbent Assay , Peptides
5.
Biosens Bioelectron ; 74: 398-405, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26164011

ABSTRACT

The early diagnosis of malignancy is the most critical factor for patient survival and the treatment of cancer. In particular, leukemic cells are highly heterogeneous, and there is a need to develop new rapid and accurate detection systems for early diagnosis and monitoring of minimal residual disease. This study reports the utilization of molecular networks consisting of entire bacteriophage structure, displaying specific peptides, directly assembled with silver nanoparticles as a new Surface Enhanced Raman Spectroscopy (SERS) probe for U937 cells identification in vitro. A 9-mer pVIII M13 phage display library is screened against U937 to identify peptides that selectively recognize these cells. Then, phage clone is assembled with silver nanoparticles and the resulting network is used to obtain a SERS signal on cell-type specific molecular targets. The proposed strategy could be a very sensitive tool for the design of biosensors for highly specific and selective identification of hematological cancer cells and for detection of minimal residual disease in a significant proportion of human blood malignancy.


Subject(s)
Biomarkers, Tumor/metabolism , Metal Nanoparticles/chemistry , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/metabolism , Peptide Library , Spectrum Analysis, Raman/instrumentation , Humans , Metal Nanoparticles/ultrastructure , Molecular Probe Techniques/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Silver/chemistry , Surface Plasmon Resonance/instrumentation , U937 Cells
6.
Foodborne Pathog Dis ; 8(1): 11-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20932087

ABSTRACT

Several foodborne human pathogens, when exposed to harsh conditions, enter viable but nonculturable (VBNC) state; however, still open is the question whether VBNC pathogens could be a risk for public health, because, potentially, they can resuscitate. Moreover, cultural methods for food safety control were not able to detect VBNC forms of foodborne bacteria. Particularly, it has not been established whether food chemophysical characteristics can induce VBNC state in contaminating pathogen bacterial populations, especially in food, such as salads and fresh fruit juices, not subjected to any decontamination treatment. In this preliminary study, we intentionally contaminated grapefruit juice to determine whether pathogen bacteria could enter VNBC state. In fact, grapefruit juice contains natural antimicrobial compounds, has an average pH of about 3 and low content in carbohydrates. Such characteristics make grapefruit juice a harsh environment for microbial survival. For this purpose, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium ATCC 14028, Listeria monocytogenes ATCC 7644, and Shigella flexneri ATCC 12022, at two different inoculum sizes, have been used. Viability by the LIVE/DEAD BacLight Bacterial Viability kit and culturability by plate counts assay were monitored, whereas "resuscitation" of nonculturable populations was attempted by inoculation in nutrient-rich media. The data showed that L. monocytogenes lost both culturability and viability and did not resuscitate within 24 h independently on inoculum size, whereas E. coli O157:H7 was able to resuscitate after 24 h but did not after 48 h. Salmonella Typhimurium and S. flexneri, depending on inoculum size, lost culturability but maintained viability and were able to resuscitate; moreover, S. flexneri was still able to form colonies after 48 h at high inoculum size. In conclusion, entry into VBNC state differs on the species, depending, in turn, on inoculum size and time of incubation.


Subject(s)
Bacteria/growth & development , Beverages/microbiology , Citrus paradisi/microbiology , Food Microbiology , Foodborne Diseases/microbiology , Colony Count, Microbial , Escherichia coli O157/growth & development , Fruit/microbiology , Humans , Listeria monocytogenes/growth & development , Microbial Viability , Salmonella typhi/growth & development , Shigella flexneri/growth & development
7.
Math Biosci Eng ; 5(1): 75-83, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18193932

ABSTRACT

In this work, aggregation states of bacteria on engineered surfaces are investigated both from the experimental point of view and from the theoretical one. The starting point of this work is a series of experiments carried out on abiotic surfaces in which bacteria adhere forming self-organized patterns. To reproduce the main characteristics of the phenomenon a model based on self-organization of a group of agents has been used. The agents represent bacteria and are free to move on a given surface. On the basis of local rules they may adhere and then eventually form self-organized aggregates. Our numerical results demonstrate that few simple rules are able to explain the emergence of self-organized patterns. Depending on the parameters used, the model is able to reproduce the aggregation patterns observed under different experimental conditions and to predict the behavior of a culture of two bacterial species.


Subject(s)
Bacterial Adhesion/physiology , Cell Communication/physiology , Cell Culture Techniques/methods , Ecosystem , Models, Biological , Computer Simulation , Feedback/physiology
8.
Biosens Bioelectron ; 23(7): 1137-44, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18068970

ABSTRACT

The design of novel biosensors for the detection of biological threats, such as Pseudomonas aeruginosa, requires probes that specifically bind biological agents and insure their immediate and efficient recognition. Advanced bio-selective sensors may meet the requests for isolation, concentration of the agents and their real-time detection. There is a need for robust and inexpensive affinity probes alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we identified from two phage-displayed random peptide libraries phage clones displaying peptides capable of specific and strong binding to P. aeruginosa cell surface. The ability of the phage clones to interact specifically with P. aeruginosa was demonstrated by using enzyme-linked immunosorbent assay (ELISA). We assessed selectivity of phage-bacteria-binding by comparing the binding ability of the selected clones to the selector bacterium and a panel of other bacterial species; we also demonstrated by dot spot and immunoblotting that the most reactive and selective phage peptide bound with high avidity the bacterial cell surface. In addition, as proof-of-concept, we tested the possibility to immobilize the affinity-selected phage to a putative biosensor surface. The quality of phage deposition was monitored by ELISA, and phage-bacterial-binding was confirmed by high-power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including clinical-based diagnostics and possibly biological warfare applications.


Subject(s)
Biosensing Techniques/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Molecular Probe Techniques/instrumentation , Peptide Library , Pseudomonas aeruginosa/isolation & purification , Biosensing Techniques/methods , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Equipment Failure Analysis , Pseudomonas aeruginosa/metabolism , Reproducibility of Results , Sensitivity and Specificity
9.
J Colloid Interface Sci ; 289(2): 386-93, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16112223

ABSTRACT

The influence of the surface chemical structure and related physicochemical properties on the adhesion of P. aeruginosa has been studied for moderately hydrophobic polymers and for hydrophilic surfaces obtained by O2-plasma treatments and 50 keV Ar+ beam irradiation of poly(hydroxymethylsiloxane) and poly(ethyleneterephthalate). The surface chemical structure has been obtained by X-ray photoelectron spectroscopy, the roughness was measured by atomic force microscopy, and the surface free energy was evaluated from contact angle measurements for all the polymer substrates before and after the irradiation treatments. It is shown that a massive and unusually fast secretion of exopolysaccharides onto highly polar surfaces, corresponding to the formation of complex three-dimensional multilayers (i.e., biofilm-like structures), occurs already after 2 h of incubation. It is suggested that such highly polar surfaces can operate either by promoting, by means of a still unknown biomolecular mechanism, an early gene expression process or by mimicking the P. aeruginosa cellular walls.


Subject(s)
Polyethylene Terephthalates/chemistry , Polymers/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/physiology , Pseudomonas aeruginosa/chemistry , Siloxanes/chemistry , Argon , Isotopes , Membranes, Artificial , Oxygen/chemistry , Particle Size , Polyethylene Terephthalates/radiation effects , Polymers/radiation effects , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/physiology , Siloxanes/radiation effects , Surface Properties
10.
Biomacromolecules ; 5(6): 2469-78, 2004.
Article in English | MEDLINE | ID: mdl-15530065

ABSTRACT

Pseudomonas aeruginosa ATCC 27853 accumulated poly(3-hydroxyalkanoates) (PHAs) after growth on saturated fatty acids with an odd number of carbon atoms. No nutrient limitation was required to induce PHA synthesis, although better yields were obtained when the medium was magnesium deprived. A comparative study was carried out between PHAs obtained from C-odd and those from C-even carbon sources. Repeating units identification was performed by gas chromatography (GC) and capillary liquid chromatography-electrospray mass spectrometry (LC-ESI MS) of methanolyzed samples. When C-odd n-alkanoic acids from nonanoic to pentadecanoic were used the lowest hydroxyalkanoate unit found was 3-hydroxyvalerate and the highest 3-hydroxypentadecanoate, whereas when C-even acids from octanoic to eicosanoic were used these were 3-hydroxycaproate and 3-hydroxyeicosanoate, respectively. Weight average molecular weights were in the range 187 000-596 000. DSC traces showed Tm and DeltaHm which varied from 43 to 58 degrees C and from 5.9 to 24.8 J/g, with the PHAs generated from C-odd carbon sources having lower values. ESI MS of partially pyrolyzed samples allowed the identification of oligomers up to heptamers, and statistical analysis of the ions intensity in the mass spectra showed that these PHAs are random copolyesters.


Subject(s)
Fatty Acids/metabolism , Polyesters/chemistry , Pseudomonas aeruginosa/metabolism , Calorimetry, Differential Scanning , Chromatography, Gas , Fatty Acids/chemistry , Hydroxy Acids/metabolism , Magnesium/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Pentanoic Acids/chemistry , Polyesters/metabolism , Spectrometry, Mass, Electrospray Ionization , Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...