Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Nat Prod ; 87(3): 470-479, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38381880

ABSTRACT

The fact that alkaloids are bases has been the most explored chemical feature of their extraction and purification procedures. The main drawback of these procedures is that they employ undesirable chemicals, with HCl and CH2Cl2 probably being the most commonly employed chemicals in their subsequent steps. This work tested the hypothesis that advantages in recovery efficiency support this common practice. Experiments were conducted in three laboratories, monitoring the alkaloids harmine (1), boldine (2), vincamine (3), and mescaline (4) extracted from Banisteriopsis caapi, Peumus boldus, Vinca minor, and Trichocereus macrogonus var. pachanoi, respectively. The research demonstrated that HCl could be replaced with citric acid (CA) without loss or even better extraction performance. The recommended EtOAc could completely replace CH2Cl2 in three out of four study cases and partially in the fourth case without harming the extraction efficiency. In addition, the alternative solvents tert-amyl methyl ether (TAME) and n-butyl acetate (BuOAc) could enhance the extraction of alkaloids. These results might incentivize natural products laboratories to consider sustainability more routinely, thus being closer to current practices in the pharmaceutical industry, which has been replacing solvents and processes with greener ones.


Subject(s)
Alkaloids , Plant Extracts , Mescaline , Solvents
2.
Food Res Int ; 130: 108949, 2020 04.
Article in English | MEDLINE | ID: mdl-32156391

ABSTRACT

Soybeans are among the world's major crops responsible for food and biodiesel production, as well as a major source of isoflavones - a class of high value-added bioactive compounds. As estimated 460 million tonnes of soya residues (branches, leaves, roots, and pods) will be produced in the 2018/2019 harvest, and 20-40% of this waste must be removed from the field to ensure soil quality and minimize environmental impacts. This work investigated the potential occurrence and content of isoflavones in soya agricultural waste collected directly from the ground after mechanically harvesting. We also assessed the extraction performances of ethanol and acetone for these materials as an alternative to acetonitrile, a problematic solvent from an environmental point of view. Considerable amounts of isoflavones were found in soya agricultural waste collected directly from the ground when compared to soybeans (2.71 ± 0.27, 0.57 ± 0.1, 0.30 ± 0.05 and 2.09 ± 0.24 kg of isoflavones/tonne of leaves, branches, pods, and soybeans, respectively). The greener ethanol and acetone performed well for a broad range of compounds. This is an example in which appreciable amounts of high value-added compounds are wasted. Since isoflavones are considered phytoestrogens, their recovery from part of this waste might avoid potential contamination of soil and groundwater.


Subject(s)
Agriculture , Glycine max/chemistry , Isoflavones/chemistry , Solid Waste , Molecular Structure , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL