Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microb Pathog ; 180: 106129, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119940

ABSTRACT

The increased resistance of microorganisms to antimicrobial drugs makes it necessary to search for new active compounds, such as chalcones. Their simple chemical structure makes them molecules easy to synthesize. Therefore, the aim of this study was to evaluate the antimicrobial and potentiating activity of antibiotics and antifungals by synthetic chalcones against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. The synthesis of chalcones was carried out by Claisen-Schimidt aldol condensation. Nuclear Magnetic Resonance (NMR) and Gas Chromatography Coupled to Mass Spectrometry (GC/MS) were also performed. Microbiological tests were performed by the broth microdilution method, using gentamicin, norfloxacin and penicillin as standard drugs for the antibacterial assay, and fluconazole for the antifungal assay. Three chalcones were obtained (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnone-1,3,6,8-tetraen-5-one (DB-CNM), (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB-Anisal). The compound DB-Acetone was able to inhibit P. aeruginosa ATCC 9027 at a concentration of 1.4 × 102 µM (32 µg/mL), while DB-CNM and DB-Anisal inhibited the growth of S. aureus ATCC 25923 at 17.88 × 102 µM and 2.71 × 101 µM (512 µg/mL and 8 µg/mL) respectively. In the combined activity, DB-Anisal was able to potentiate the effect of the three antibacterial drugs tested against E. coli 06, norfloxacin (128 for 4 µg/mL ±1) against P. aeruginosa 24 and penicillin (1,024 for 16 µg/mL ±1) against S. aureus 10. In antifungal assays, chalcones were not able to inhibit the growth of fungal strains tested. However, both showed potentiating activity with fluconazole, ranging from 8.17 x 10-1 µM (0.4909 µg/mL) to 2.35 µM (13.96 µg/mL). It is concluded that synthetic chalcones have antimicrobial potential, demonstrating good intrinsic activity against fungi and bacteria, in addition to potentiating the antibiotics and antifungal tested. Further studies are needed addressing the mechanisms of action responsible for the results found in this work.


Subject(s)
Anti-Infective Agents , Chalcones , Antifungal Agents/chemistry , Fluconazole/pharmacology , Chalcones/pharmacology , Chalcones/chemistry , Staphylococcus aureus , Norfloxacin/pharmacology , Escherichia coli , Acetone/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Candida albicans , Penicillins/pharmacology , Microbial Sensitivity Tests
2.
Molecules ; 28(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36615503

ABSTRACT

This study aimed to identify the chemical composition of the Spondias tuberosa aqueous leaf and root extracts (EALST and EARST) and to evaluate their effect, comparatively, against opportunistic pathogenic fungi. Ultra-Performance Liquid Chromatography Coupled to a Quadrupole/Time of Flight System (UPLC-MS-ESI-QTOF) was employed for chemical analysis. Candida albicans and C. tropicalis standard strains and clinical isolates were used (CA INCQS 40006, CT INCQS 40042, CA URM 5974, and CT URM 4262). The 50% Inhibitory Concentration for the fungal population (IC50) was determined for both the intrinsic action of the extracts and the extract/fluconazole (FCZ) associations. The determination of the Minimum Fungicidal Concentration (MFC) and the verification of effects over fungal morphological transitions were performed by subculture in Petri dishes and humid chambers, respectively, both based on micro-dilution. UPLC-MS-ESI-QTOF analysis revealed the presence of phenolic and flavonoid compounds. The association of the extracts with fluconazole, resulted in IC50 values from 2.62 µg/mL to 308.96 µg/mL. The MFC of the extracts was ≥16,384 µg/mL for all tested strains, while fluconazole obtained an MFC of 8192 µg/mL against C. albicans strains. A reduction in MFC against CA URM 5974 (EALST: 2048 µg/mL and EARST: 1024 µg/mL) occurred in the extract/fluconazole association.


Subject(s)
Antifungal Agents , Fluconazole , Antifungal Agents/chemistry , Fluconazole/pharmacology , Chromatography, Liquid , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Tandem Mass Spectrometry , Candida albicans , Candida tropicalis , Microbial Sensitivity Tests
3.
J Ethnopharmacol ; 279: 114363, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34216726

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Malvaceae family, an important group of plants that have the Gossypium (cotton) genus has been used in folk medicine to treat microbial diseases and symptoms. AIMS OF THE STUDY: This article aims to understand its ethnobotany expression in communities and scientific elucidation of antimicrobial activities of this genus through literature review. MATERIALS AND METHODS: The bibliographic survey was carried out from 1999 to 2019 with keywords combinations such as "Gossypium + ethnobotanical", " Gossypium + medicinal ", "Gossypium + the biological activity" in scientific databases as Pubmed, Scopus, Web of Science, DOAJ, Scielo, Bireme. RESULTS: After data analysis, we found that the Gossypium genus, specifically Gossypium hirsutum, G. barbadense, G. herbaceum, G. arboreum are the species most cited in the treatment of microbial diseases and symptoms in communities all over the world. In light of scientific elucidation of biological activities, the Gossypium genus has been used to treat protozoal, bacterial, fungal, and viral diseases. CONCLUSIONS: The review demonstrated that the Gossypium genus is a promising source of biological activities against microbial diseases, especially in the treatment of protozoal diseases like malaria.


Subject(s)
Anti-Infective Agents/pharmacology , Gossypium/chemistry , Plant Preparations/pharmacology , Animals , Anti-Infective Agents/isolation & purification , Ethnobotany , Ethnopharmacology , Gossypium/classification , Humans , Medicine, Traditional/methods , Plant Preparations/isolation & purification , Protozoan Infections/drug therapy
4.
Arch Microbiol ; 203(6): 3077-3087, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33787988

ABSTRACT

This study aimed to investigate the chemical composition and antifungal potential of the essential oil of Baccharis trimera (Less.) DC. against Candida strains. The half maximal inhibitory concentration (IC50) was assessed by the microdilution method using the essential oil at a concentration range of 8192 to 8 µg/mL. The minimum fungicide concentration (MFC) was determined by subculture in solid medium. The ability of the essential oil to modulate the activity of antifungals was determined in wells treated simultaneously with the oil at a subinhibitory concentration (MFC/16) and fluconazole (FCZ). The fungal morphology was analyzed by microscopy. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the chemical composition. The essential oil presented an CI50 of 11.24 and 1.45 µg/mL, which was found to potentiate the effect of FCZ against Candida albicans. On the other hand, this combined treatment resulted in antagonism against Candida tropicalis and no evident modulation against Candida krusei was observed. The essential oil significantly inhibited hyphae growth. However, with a MFC ≥ 16,384 µg/mL, it is assumed that it has a fungistatic action. The antifungal properties demonstrated in this study might be related to the presence of sesquiterpenes and monoterpenes, and the interaction between them. In conclusion, Baccharis trimera showed promising anti-Candida effects, in addition to potentiating the activity of FCZ against Candida albicans, affecting its morphological transition. Therefore, this species constitutes a source of chemical compounds with the potential to be used in the combat of fungal infections.


Subject(s)
Baccharis , Candida , Oils, Volatile , Antifungal Agents/pharmacology , Baccharis/chemistry , Candida/drug effects , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Phytochemicals/pharmacology , Pichia/drug effects
5.
Phytother Res ; 35(5): 2445-2476, 2021 May.
Article in English | MEDLINE | ID: mdl-33325585

ABSTRACT

Astragalus L. is widely distributed throughout the temperate regions of Europe, Asia, and North America. The genus is widely used in folk medicine and in dietary supplements, as well as in cosmetics, teas, coffee, vegetable gums, and as forage for animals. The major phytoconstituents of Astragalus species with beneficial properties are saponins, flavonoids, and polysaccharides. Astragalus extracts and their isolated components exhibited promising in vitro and in vivo biological activities, including antiaging, antiinfective, cytoprotective, antiinflammatory, antioxidant, antitumor, antidiabesity, and immune-enhancing properties. Considering their proven therapeutic potential, the aim of this work is to give a comprehensive summary of the Astragalus spp. and their active components, in an attempt to provide new insight for further clinical development of these xenobiotics. This is the first review that briefly describes their ethnopharmacology, composition, biological, and toxicological properties.

6.
Article in English | MEDLINE | ID: mdl-32595597

ABSTRACT

Anacardium plants have received increasing recognition due to its nutritional and biological properties. A number of secondary metabolites are present in its leaves, fruits, and other parts of the plant. Among the diverse Anacardium plants' bioactive effects, their antioxidant, antimicrobial, and anticancer activities comprise those that have gained more attention. Thus, the present article aims to review the Anacardium plants' biological effects. A special emphasis is also given to their pharmacological and clinical efficacy, which may trigger further studies on their therapeutic properties with clinical trials.


Subject(s)
Anacardium/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Ethnopharmacology , Plant Extracts/pharmacology , Animals , Humans
7.
Food Chem Toxicol ; 135: 110987, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31759067

ABSTRACT

The Piper mikanianum species were investigated by the antimicrobial potential and chemical composition. Chemical analysis was performed by gas chromatography coupled to mass spectrometry (GC/MS). The Minimum Inhibitory Concentration (MIC) as well as the 50% Inhibitory Concentration against Candida strains were determined by microdilution. The effect of the drug-oil combination was also evaluated to verify possible synergism. The Minimum Fungicidal Concentration (MFC) was evaluated by subculturing the microdilution in Petri dishes and the anti-pleomorphism potential of the oil was tested in humid chambers. Chemical analysis revealed safrol as the major compound. The results from the intrinsic activity evaluation of the oil did not reveal a clinical importance, however, it presented a synergistic effect when associated with gentamicin against the multidrug resistant E. coli strain and when associated with fluconazole against fungal strains. Moreover, the oil possessed a fungistatic effect. Total inhibition of filamentous structures occurred in both Candida species in the anti-virulence test. The P. mikanianum essential oil showed a potentiating activity of drugs for which resistance exists and an inhibitory effect of one of the main virulence factors of the Candida genus, morphological transition, which has been previously shown to be responsible for causing invasive infections in human tissues.


Subject(s)
Anti-Infective Agents/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/pharmacology , Piper/chemistry , Candida/classification , Candida/drug effects , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Species Specificity , Staphylococcus aureus/drug effects
8.
Biomolecules ; 9(9)2019 09 09.
Article in English | MEDLINE | ID: mdl-31505888

ABSTRACT

Anacardium plants are native to the American tropical regions, and Anacardium occidentale L. (cashew tree) is the most recognized species of the genus. These species contain rich secondary metabolites in their leaf and shoot powder, fruits and other parts that have shown diverse applications. This review describes the habitat and cultivation of Anacardium species, phytochemical and nutritional composition, and their industrial food applications. Besides, we also discuss the secondary metabolites present in Anacardium plants which display great antioxidant and antimicrobial effects. These make the use of Anacardium species in the food industry an interesting approach to the development of green foods.


Subject(s)
Anacardium/chemistry , Biotechnology , Nutrients/analysis , Anacardium/growth & development , Food Preservation , Phytochemicals/analysis
9.
Molecules ; 23(11)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30388858

ABSTRACT

Tagetes (marigold) is native to America, and its cultivation currently extends to other countries in Africa, Asia, and Europe. Many species of this genus, such as T. minuta, T. erecta, T. patula, and T. tenuifolia, are cultivated as ornamental plants and studied for their medicinal properties on the basis of their use in folk medicine. Different parts of the Tagetes species are used as remedies to treat various health problems, including dental, stomach, intestinal, emotional, and nervous disorders, as well as muscular pain, across the world. Furthermore, these plants are studied in the field of agriculture for their fungicidal, bactericidal, and insecticidal activities. The phytochemical composition of the extracts of different Tagetes species parts are reported in this work. These compounds exhibit antioxidant, antiinflammatory, and enzyme inhibitory properties. Cultivation and the factors affecting the chemical composition of Tagetes species are also covered. In the current work, available literature on Tagetes species in traditional medicine, their application as a food preservative, and their antimicrobial activities are reviewed.


Subject(s)
Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tagetes/chemistry , Agriculture , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Food Additives , Food Preservatives , Medicine, Traditional , Phytochemicals/chemistry , Phytochemicals/pharmacology
10.
Food Chem Toxicol ; 119: 122-132, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29751075

ABSTRACT

Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 µg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 µg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus.


Subject(s)
Antifungal Agents/pharmacology , Chromatography, Liquid/methods , Mass Spectrometry/methods , Plant Extracts/pharmacology , Antifungal Agents/chemistry , Candida/drug effects , Molecular Structure , Plant Extracts/chemistry , Psidium/chemistry
11.
Phytother Res ; 32(9): 1653-1663, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29749084

ABSTRACT

The genus Echinacea consists of 11 taxa of herbaceous and perennial flowering plants. In particular, Echinacea purpurea (L.) Moench is widely cultivated all over the United States, Canada, and in Europe, exclusively in Germany, for its beauty and reported medicinal properties. Echinacea extracts have been used traditionally as wound healing to improve the immune system and to treat respiratory symptoms caused by bacterial infections. Echinacea extracts have demonstrated antioxidant and antimicrobial activities, and to be safe. This survey aims at reviewing the medicinal properties of Echinacea species, their cultivation, chemical composition, and the potential uses of these plants as antioxidant and antibacterial agents in foods and in a clinical context. Moreover, the factors affecting the chemical composition of Echinacea spp. are also covered.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Echinacea/chemistry , Plant Extracts/pharmacology , Food Preservatives/pharmacology , Humans , Medicine, Traditional , Oils, Volatile/chemistry , Phytotherapy , Plants, Medicinal/chemistry
12.
Microb Pathog ; 107: 280-286, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28385578

ABSTRACT

The association of herbal products with standard antimicrobial drugs has recently gained more attention as a hope to overcome infectious diseases caused by multidrug-resistant microorganisms. Here, we investigated for the first time the antimicrobial (antifungal and antibacterial) activity of ethanolic and aqueous extracts of R. echinus against multiresistant strains of bacteria (E. coli, P. aeruginosa and S. aureus) and fungi (C. albicans, C. krusei and C. tropicalis), as well as potential to enhance the activity of antibiotics drugs. In addition, both extract were chemically characterized and their toxicity was assessed in Artemia salina. Our results demonstrate that aqueous extract of R. echinus caused a significant increase in the activity of antibiotics gentamicin and imipenem, while the ethanolic extract strongly enhanced the antibiotic activity of gentamicin, amikacin, imipenem and ciprofloxacin against P. aeruginosa. However, neither the ethanolic nor the aqueous extracts significantly affect the antibiotic activity of the drugs when tested against S. aureus. Phytochemical analysis of the extracts indicated ellagic acid, caffeic acid and chlorogenic acid as the major components which can be at least in part responsible for the enhanced activity of antibiotics. None of the extracts showed toxicity in A. salina even at the highest concentration tested (1000 µg/mL). All together, our results suggest that the leaf extract of R. echinus can be an effective source of modulating agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Plant Extracts/pharmacology , Tracheophyta/chemistry , Animals , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Artemia/drug effects , Bacteria/drug effects , Candida/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...