Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 277(Pt 1): 133831, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084978

ABSTRACT

Cellulose from bacteria is a high-purity biomaterial naturally produced by bacteria as part of their metabolic process. Although it inherently lacks antimicrobial activity, its modification with bioactive substances can significantly enhance its efficacy beyond that of the original compounds. This biomaterial features a unique ability to retain substantial quantities of liquids within its three-dimensional network, making it a prime candidate for biomedical applications. Versatile in its properties, it can be utilized across various industries. Previous research has highlighted its capacity to exhibit antimicrobial properties and to encapsulate nanostructured materials, thereby augmenting its antibacterial effectiveness. This review focuses on the use of cellulose from bacteria as a carrier for active compounds, specifically targeting antibacterial activity against drug-resistant strains. We explore its role in innovative bacterial cellulose-based systems, which present a promising solution for tackling bacterial resistance. This review aims to showcase the potential of bacterial cellulose in developing new devices and treatment strategies that address critical concerns in global health.


Subject(s)
Anti-Bacterial Agents , Bacteria , Cellulose , Cellulose/chemistry , Humans , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Delivery Systems , Communicable Diseases/drug therapy , Communicable Diseases/microbiology , Drug Carriers/chemistry
2.
Bioact Mater ; 39: 106-134, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38783925

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.

3.
Diseases ; 11(4)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37987261

ABSTRACT

The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.

SELECTION OF CITATIONS
SEARCH DETAIL