ABSTRACT
SUMMARY STATEMENT: The global pandemic of COVID-19 had strong repercussions in healthcare simulation-based education around the world. Different adaptations to imposed restraints such as social distancing have been developed to address the educational needs of healthcare professionals. However, the lack of access to simulators in low-income countries or rural areas may restrict the access to distance simulation-based training.
Subject(s)
COVID-19 , Health Personnel , Humans , PandemicsABSTRACT
Aneurysm clipping requires the proficiency of several skills, yet the traditional way of practicing them has been recently challenged. The use of simulators could be an alternative educational tool. The aim of this data analysis is to provide further evaluation of a reusable low-cost 3D printed training model we developed for aneurysm clipping [1]. The simulator was designed to replicate the bone structure, arteries and targeted aneurysms. Thirty-two neurosurgery residents performed a craniotomy and aneurysm clipping using the model and then filled out a survey. The survey was designed in two parts: a 5-point Likert scale questionnaire and three questions requiring written responses [1]. Two dimensions of the model were evaluated by the questionnaire: the face validity, assessed by 5 questions about the realism of the model, and the content validity, assessed by 6 questions regarding the usefulness of the model during the different steps of the training procedure. The three questions requiring written responses referred to the strengths and weaknesses of the simulator and a global yes/no question as to whether or not they would repeat the experience. Demographic data, experience level and survey responses of the residents were grouped in a dataset [2]. A descriptive analysis was performed for each dimension. Then, the groups were compared according to their level of expertise (Junior and Senior groups) with an independent sample t-test. A Confirmatory Factor Analysis (CFA) was estimated, using a Weighted Least Squares Mean Variance adjusted (WLSMV) which works best for the ordinal data [3]. Fitness was calculated using chi-square (χ2) test, Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), and the Root Mean Square Error of Approximation (RMSEA). A non-significant χ2, CFI and TLI greater than 0.90 and RMSEA < 0.08 were considered an acceptable fit [4]. All data analysis was performed using IBM SPSS 23.0 statistical software. Data are reported as mean + standard deviation (SD). A probability p < 0.05 was considered significant. Exploratory Factor Analysis was done to explore the factorial structure of the 11-items scale in the sample, first we performed a principal components analysis. The Kaiser-Meyer-Olkin measure verified the sampling adequacy for the analysis (KMO = 0.784; Bartlett's Test of Sphericity χ2 (55) = 243.44, p < .001), indicating correlation is adequate for factor analysis. Considering Eigen values greater than 1, a two-factor solution explained 73.1% of the variance but left one item in factor 2 (Q 11). The results of this factor analysis are presented in Table 1. Confirmatory Factor Analysis, considering only the 10 items in the first factor (removing question 11 of our model), was performed. This model reached the following fit: χ2 (35) = 38.821, p > .05; CFI = 0.997; TLI = 0.996; RMSEA 0.058, without any error terms to exhibit covariance. Regarding the reliability of the questionnaire, the internal consistency was explored in the 10 items selected in the confirmatory factor analysis with an alpha coefficient (α = 0.941).
ABSTRACT
Resumen Objetivo: Presentar la elaboración de un simulador de trauma torácico de alta fidelidad elaborado mediante modelamiento e impresión 3D a partir de un torso humano cadavérico. Materiales y Método: Estudio descriptivo del desarrollo de un simulador de trauma torácico utilizando metodología centrada en el prototipado y la iteración basada en testeos. Resultados: Se elaboró un simulador reutilizable mediante la digitalización de un torso cadavérico utilizando tomografía computada. Se realizó una reconstrucción digital del torso diseñando los planos subcutáneos, muscular y óseo en base a las imágenes del paciente pre y postoracotomía anterolateral. Utilizando impresión 3D y materiales sintéticos, se elaboró la caja torácica para luego instalar un corazón y pulmón porcino ventilado y perfundido. Los parches de la toracotomía son reemplazables y de bajo costo. En conjunto, este simulador permite el entrenamiento en manejo de lesiones traumáticas cardiacas y pulmonares de alta fidelidad. Conclusión: La metodología presentada permite la creación de un modelo para el entrenamiento y evaluación de habilidades quirúrgicas en trauma torácico. Los elementos principales del simulador son reutilizables y permiten mantener bajos los costos del entrenamiento.
Aim: To describe the design and creation of a high-fidelity thoracic trauma surgery simulation model incorporating 3D printing technology using a cadaveric human torso as a model. Materials and Method: This is a descriptive study that aims to illustrate the creation process of a thoracic trauma surgery simulation model throughout the incorporation of prototypes and dynamic iteration technologies. Results: A high-fidelity reusable thoracic trauma surgery simulation model was created from the digitalization of a cadaveric torso using a computed tomography scan. Throughout digital reconstruction tools, the subcutaneous, muscular, and skeletal structures were modeled from images obtained before and after an anterolateral thoracotomy. Using 3D printing and synthetic materials, a high-fidelity thoracic cavity was built so that perfused and ventilated porcine heart and lungs could be placed. A thoracotomy patch for the anterolateral thoracotomy was designed in a reusable and low-cost fashion. This simulation model is suitable for high fidelity training in the surgical management of cardiopulmonary traumatic injuries. Conclusion: The described methodology allowed the creation of a simulation model for training and assessment of surgical skills in thoracic trauma. The main components of the simulation model are made from reusable materials, broadening access to low-cost, high fidelity training.
Subject(s)
Humans , Thoracic Injuries , Printing, Three-Dimensional , Simulation Training/methods , Education, Medical/methods , Surgeons/education , Simulation Training/trendsABSTRACT
Los cursos de anatomía constituyen un componente esencial del currículo de medicina, aportando las bases morfológicas para el examen clínico, la interpretación de imágenes médicas y la práctica segura de intervenciones quirúrgicas y procedimientos. Recientemente, la tecnología de impresión 3D ha permitido generar réplicas de disecciones de segmentos corporales a escala real que se utilizan como recursos docentes para el estudio de la anatomía humana, generando así modelos docentes de alta verosimilitud que sirven como alternativa al uso de preparaciones cadavéricas para la docencia anatómica. En este trabajo presentamos los resultados obtenidos al utilizar nuestro kit KAN3D que incluye réplicas físicas de secciones transversales del tronco y de las extremidades y una plataforma que aloja los modelos digitales debidamente rotulados, producto financiado con el proyecto FONDEF IT16I10073. La aplicación de estos productos en docencia señalan que las réplicas de secciones transversales de segmentos corporales presentan una alta verosimilitud en términos de forma, color, topografía y texturas, características que las validan como un excelente recurso docente para la docencia y el aprendizaje de la anatomía seccional humana. El kit KAN3D pone a disposición de los estudiantes de las carreras de la salud recursos de alta verosimilitud, disponibles a libre demanda, que les permita reproducir la experiencia de la actividad práctica de Morfología en el momento y lugar en que ellos se encuentren dispuestos, superando así las limitaciones de acceso a los pabellones de Anatomía y a material cadavérico de calidad.
Anatomy courses constitute an essential component of the medical curriculum, providing the morphological basis for the clinical examination, the interpretation of medical images and the safe practice of surgical interventions and procedures. Recently, 3D printing technology has allowed to generate replicas of dissections of body segments on a real scale that are used as teaching resources for the study of human anatomy, thus generating high-likelihood teaching models that serve as an alternative to the use of cadaveric preparations for Anatomical teaching. In this paper we present the results obtained by using our KAN3D kit that includes physical replicas of cross sections of the trunk and extremities and a platform that houses properly labeled digital models, a product financed with the FONDEF IT16I10073 project. The application of these products in teaching indicate that replicas of cross sections of body segments have a high likelihood in terms of shape, color, topography and textures, characteristics that validate them as an excellent teaching resource for teaching and learning the human sectional anatomy. The KAN3D kit makes available to students of health careers a high-likelihood resources, accesible on demand, that allows them to reproduce the experience of the practical activity of Morphology at the time and place where they are willing, exceeding thus the limitations of access to the Anatomy pavilions and quality cadaveric material.
Subject(s)
Humans , Software , Anatomy, Cross-Sectional/education , Education, Medical/methods , Printing, Three-Dimensional , Anatomy/educationABSTRACT
Resumen: El aprendizaje de los estudiantes de Medicina de Pregrado en ambiente simulado constituye una alternativa en la obtención de competencias técnicas y no técnicas. Objetivo: Desarrollar un fantoma e implementar un taller modular de entrenamiento de paracentesis abdominal en ambiente simulado para estudiantes de Medicina. Métodos: Se diseñaron y desarrollaron modelos para la realización de paracentesis abdominal en la Escuela de Diseño de la Pontificia Universidad Católica de Chile (PUC) y se implementó un taller para alumnos de 4to año de Medicina de la PUC, utilizando un enfoque constructivista, sesiones de entrenamiento simulado con debriefing basadas en el modelo plus-delta y evaluación pre y post-procedimiento siguiendo los principios de evaluación para el aprendizaje. Resultados: Se desarrollaron 3 prototipos hasta llegar a un modelo definitivo de alta fidelidad basado en la percepción de 20 expertos. 237 alumnos asistieron a un taller de paracentesis abdominal en el Centro de Cirugía Experimental y Simulación Universidad Católica (UC). Este consistió en una actividad práctica grupal (7-8 alumnos por sesión) que incluyó: una evaluación pre-sesión, un vídeo instruccional, una demostración en tiempo real en el fantoma por parte de un docente, la realización guiada del procedimiento por parte de los alumnos, debriefing y cierre de la sesión. Conclusiones: Un modelo de enseñanza en ambiente simulado es posible de ser diseñado e implementado exitosamente en un centro educacional para estudiantes de Medicina de Pregrado. Este taller de paracentesis permite entrenar a los alumnos en la realización de paracentesis abdominal en un ambiente seguro para los alumnos y pacientes y puede ser implementado a bajo costo en otros centros o instituciones. (AU)
Abstract: Simulated environments are an option in the learning process of undergraduate medical students in order to obtain technical and non-technical. Aim: To develop a mannequin for abdominal paracentesis and the implementation of a training workshop to perform abdominal paracentesis in a simulated environment for undergraduate medical students. Methods: The prototypes were designed and developed to perform abdominal paracentesis at the School of Design at the Pontificia Universidad Católica de Chile (PUC) and a workshop was implemented in a course with 4-year medical students at the PUC, using a constructivist approach and simulated training sessions and providing debriefing (based on plus-delta model) and pre-post training assessment following the principles of Assessment for Learning. Results: Three prototypes were developed until the final high-fidelity-mannequin was achieved. The abdominal paracentesis workshop was attended by 237 students at the Universidad Católica (UC) Experimental Surgery and Simulation Center. This was a hands-on group activity (7-8 students per session) including pre-session assessment, instructional video-tape, real-time demonstration of abdominal paracentesis procedure by the clinical teacher, followed by abdominal paracentesis performed by the students, debriefing and closing session. Conclusions: A teaching model in a simulated environment is feasible to be successfully designed and implemented in an educational center for undergraduate medical students. This workshop allows students training process to perform abdominal paracentesis in a safe environment for students and patients and it can be implemented in other centers or institutions with low cost.(AU)
Subject(s)
Humans , Male , Female , Adaptive Clinical Trials as Topic , Students, Medical , Paracentesis , Education, Medical , AbdomenABSTRACT
La dificultades de acceso al material cadavérico han forzado a los anatomistas a reemplazar la disección por el uso de preparaciones tratadas con diversos métodos de conservación y la utilización cada vez más frecuente de modelos anatómicos, elementos de alto costo que pretenden imitar, no siempre con éxito, a las preparaciones cadavéricas. En el último tiempo se han desarrollado métodos de impresión 3D de modelos de segmentos corporales utilizando imágenes de Tomografía Computadorizada o escáner de superficie, de modo que existe la tecnología para poder realizar réplicas de secciones corporales o de disecciones humanas para aplicarlas con fines docentes. En este trabajo presentamos nuestra experiencia en la tecnología de impresión 3D aplicada a la creación de réplicas de secciones corporales humanas, lo que nos ha permitido generar un símil de la sección corporal, real y tangible, que conserva exactamente las proporciones, las relaciones topográficas, la veracidad morfológica y el color, sin posibilidad de descomposición ni contaminación.
The difficulties of access to cadavers have forced anatomists to replace dissections with the use of preparations treated with various methods of conservation and/or anatomical models; high-cost items that intended to imitate - not always successfully - the cadaveric preparations. Recently, new methods have been developed for 3D printing of models of body segments using computed tomography images or scanner surface, so that the technology exists to create replicas of body sections or cadaver dissections to apply for teaching purposes. We present our experience in 3D printing technology applied to create replicas of human body sections, allowing us to generate an accurate reproduction, with real and tangible sections which retain the proportions exactly as well as topographic relations, morphological and color accuracy, without the possibility of decomposition or contamination.