Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 7(1): 516, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28364128

ABSTRACT

Biogenesis and function of microRNAs can be influenced by genetic variants in the pri-miRNA sequences leading to phenotypic variability. This study aims to identify single nucleotide polymorphisms (SNPs) affecting the expression levels of bone-related mature microRNAs and thus, triggering an osteoporotic phenotype. An association analysis of SNPs located in pri-miRNA sequences with bone mineral density (BMD) was performed in the OSTEOMED2 cohort (n = 2183). Functional studies were performed for assessing the role of BMD-associated miRNAs in bone cells. Two SNPs, rs6430498 in the miR-3679 and rs12512664 in the miR-4274, were significantly associated with femoral neck BMD. Further, we measured these BMD-associated microRNAs in trabecular bone from osteoporotic hip fractures comparing to non-osteoporotic bone by qPCR. Both microRNAs were found overexpressed in fractured bone. Increased matrix mineralization was observed after miR-3679-3p inhibition in human osteoblastic cells. Finally, genotypes of rs6430498 and rs12512664 were correlated with expression levels of miR-3679 and miR-4274, respectively, in osteoblasts. In both cases, the allele that generated higher microRNA expression levels was associated with lower BMD values. In conclusion, two osteoblast-expressed microRNAs, miR-3679 and miR-4274, were associated with BMD; their overexpression could contribute to the osteoporotic phenotype. These findings open new areas for the study of bone disorders.


Subject(s)
Bone and Bones/metabolism , MicroRNAs/genetics , Osteoporosis/genetics , Polymorphism, Single Nucleotide , Aged , Alleles , Bone Density , Calcification, Physiologic , Cells, Cultured , Cohort Studies , Computational Biology/methods , Gene Expression , Gene Frequency , Genotype , Humans , MicroRNAs/chemistry , Middle Aged , Nucleic Acid Conformation , Osteoblasts/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL