Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Brain Pathol ; : e13256, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38523251

ABSTRACT

Meningeal solitary fibrous tumors (SFT) are rare and have a high frequency of local recurrence and distant metastasis. In a cohort of 126 patients (57 female, 69 male; mean age at surgery 53.0 years) with pathologically confirmed meningeal SFTs with extended clinical follow-up (median 9.9 years; range 15 days-43 years), we performed extensive molecular characterization including genome-wide DNA methylation profiling (n = 80) and targeted TERT promoter mutation testing (n = 98). Associations were examined with NAB2::STAT6 fusion status (n = 101 cases; 51 = ex5-7::ex16-17, 26 = ex4::ex2-3; 12 = ex2-3::exANY/other and 12 = no fusion) and placed in the context of 2021 Central Nervous System (CNS) WHO grade. NAB2::STAT6 fusion breakpoints (fusion type) were significantly associated with metastasis-free survival (MFS) (p = 0.03) and, on multivariate analysis, disease-specific survival (DSS) when adjusting for CNS WHO grade (p = 0.03). DNA methylation profiling revealed three distinct clusters: Cluster 1 (n = 38), Cluster 2 (n = 22), and Cluster 3 (n = 20). Methylation clusters were significantly associated with fusion type (p < 0.001), with Cluster 2 harboring ex4::ex2-3 fusion in 16 (of 20; 80.0%), nearly all TERT promoter mutations (7 of 8; 87.5%), and predominantly an "SFT" histologic phenotype (15 of 22; 68.2%). Clusters 1 and 3 were less distinct, both dominated by tumors having ex5-7::ex16-17 fusion (respectively, 25 of 33; 75.8%, and 12 of 18; 66.7%) and with variable histological phenotypes. Methylation clusters were significantly associated with MFS (p = 0.027), but not overall survival (OS). In summary, NAB2::STAT6 fusion type was significantly associated with MFS and DSS, suggesting that tumors with an ex5::ex16-17 fusion may have inferior patient outcomes. Methylation clusters were significantly associated with fusion type, TERT promoter mutation status, histologic phenotype, and MFS.

2.
Brain Pathol ; 31(1): 20-32, 2021 01.
Article in English | MEDLINE | ID: mdl-32619305

ABSTRACT

Pleomorphic xanthoastrocytoma (PXA) is a rare astrocytoma predominantly affecting children and young adults. We performed comprehensive genomic characterization on a cohort of 67 patients with histologically defined PXA (n = 53, 79%) or anaplastic PXA (A-PXA, n = 14, 21%), including copy number analysis (ThermoFisher Oncoscan, n = 67), methylation profiling (Illumina EPIC array, n = 43) and targeted next generation sequencing (n = 32). The most frequent alterations were CDKN2A/B deletion (n = 63; 94%) and BRAF p.V600E (n = 51, 76.1%). In 7 BRAF p.V600 wild-type cases, alternative driver alterations were identified involving BRAF, RAF1 and NF1. Downstream phosphorylation of ERK kinase was uniformly present. Additional pathogenic alterations were rare, with TERT, ATRX and TP53 mutations identified in a small number of tumors, predominantly A-PXA. Methylation-based classification of 46 cases utilizing a comprehensive reference tumor allowed assignment to the PXA methylation class in 40 cases. A minority grouped with the methylation classes of ganglioglioma or pilocytic astrocytoma (n = 2), anaplastic pilocytic astrocytoma (n = 2) or control tissues (n = 2). In 9 cases, tissue was available from matched primary and recurrent tumors, including 8 with anaplastic transformation. At recurrence, two tumors acquired TERT promoter mutations and the majority demonstrated additional non-recurrent copy number alterations. Methylation class was preserved at recurrence. For 62 patients (92.5%), clinical follow-up data were available (median follow-up, 5.4 years). Overall survival was significantly different between PXA and A-PXA (5-year OS 80.8% vs. 47.6%; P = 0.0009) but not progression-free survival (5-year PFS 59.9% vs. 39.8%; P = 0.05). WHO grade remained a strong predictor of overall survival when limited to 38 cases defined as PXA by methylation-based classification. Our data confirm the importance of WHO grading in histologically and epigenetically defined PXA. Methylation-based classification may be helpful in cases with ambiguous morphology, but is largely confirmatory in PXA with well-defined morphology.


Subject(s)
Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , DNA Methylation , Female , Humans , Male , Middle Aged , Neoplasm Grading , Young Adult
3.
Neuro Oncol ; 22(11): 1602-1613, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32386320

ABSTRACT

BACKGROUND: Twenty-five germline variants are associated with adult diffuse glioma, and some of these variants have been shown to be associated with particular subtypes of glioma. We hypothesized that additional germline variants could be identified if a genome-wide association study (GWAS) were performed by molecular subtype. METHODS: A total of 1320 glioma cases and 1889 controls were used in the discovery set and 799 glioma cases and 808 controls in the validation set. Glioma cases were classified into molecular subtypes based on combinations of isocitrate dehydrogenase (IDH) mutation, telomerase reverse transcriptase (TERT) promoter mutation, and 1p/19q codeletion. Logistic regression was applied to the discovery and validation sets to test for associations of variants with each of the subtypes. A meta-analysis was subsequently performed using a genome-wide P-value threshold of 5 × 10-8. RESULTS: Nine variants in or near D-2-hydroxyglutarate dehydrogenase (D2HGDH) on chromosome 2 were genome-wide significant in IDH-mutated glioma (most significant was rs5839764, meta P = 2.82 × 10-10). Further stratifying by 1p/19q codeletion status, one variant in D2HGDH was genome-wide significant in IDH-mutated non-codeleted glioma (rs1106639, meta P = 4.96 × 10-8). Further stratifying by TERT mutation, one variant near FAM20C (family with sequence similarity 20, member C) on chromosome 7 was genome-wide significant in gliomas that have IDH mutation, TERT mutation, and 1p/19q codeletion (rs111976262, meta P = 9.56 × 10-9). Thirty-six variants in or near GMEB2 on chromosome 20 near regulator of telomere elongation helicase 1 (RTEL1) were genome-wide significant in IDH wild-type glioma (most significant was rs4809313, meta P = 2.60 × 10-10). CONCLUSIONS: Performing a GWAS by molecular subtype identified 2 new regions and a candidate independent region near RTEL1, which were associated with specific glioma molecular subtypes.


Subject(s)
Alcohol Oxidoreductases/genetics , Brain Neoplasms , Casein Kinase I/genetics , Extracellular Matrix Proteins/genetics , Glioma , Adult , Brain Neoplasms/genetics , Female , Genome-Wide Association Study , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation , Telomerase/genetics
4.
Clin Cancer Res ; 26(5): 1094-1104, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31852831

ABSTRACT

PURPOSE: Glioblastoma is the most frequent and lethal primary brain tumor. Development of novel therapies relies on the availability of relevant preclinical models. We have established a panel of 96 glioblastoma patient-derived xenografts (PDX) and undertaken its genomic and phenotypic characterization. EXPERIMENTAL DESIGN: PDXs were established from glioblastoma, IDH-wildtype (n = 93), glioblastoma, IDH-mutant (n = 2), diffuse midline glioma, H3 K27M-mutant (n = 1), and both primary (n = 60) and recurrent (n = 34) tumors. Tumor growth rates, histopathology, and treatment response were characterized. Integrated molecular profiling was performed by whole-exome sequencing (WES, n = 83), RNA-sequencing (n = 68), and genome-wide methylation profiling (n = 76). WES data from 24 patient tumors was compared with derivative models. RESULTS: PDXs recapitulate many key phenotypic and molecular features of patient tumors. Orthotopic PDXs show characteristic tumor morphology and invasion patterns, but largely lack microvascular proliferation and necrosis. PDXs capture common and rare molecular drivers, including alterations of TERT, EGFR, PTEN, TP53, BRAF, and IDH1, most at frequencies comparable with human glioblastoma. However, PDGFRA amplification was absent. RNA-sequencing and genome-wide methylation profiling demonstrated broad representation of glioblastoma molecular subtypes. MGMT promoter methylation correlated with increased survival in response to temozolomide. WES of 24 matched patient tumors showed preservation of most genetic driver alterations, including EGFR amplification. However, in four patient-PDX pairs, driver alterations were gained or lost on engraftment, consistent with clonal selection. CONCLUSIONS: Our PDX panel captures the molecular heterogeneity of glioblastoma and recapitulates many salient genetic and phenotypic features. All models and genomic data are openly available to investigators.


Subject(s)
Biomarkers, Tumor/genetics , Exome Sequencing/methods , Genotype , Glioblastoma/classification , Glioblastoma/genetics , Mutation , Phenotype , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/classification , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , ErbB Receptors/genetics , Female , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Male , Mice , Middle Aged , Neoplasm Staging , Promoter Regions, Genetic , Survival Rate , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , Young Adult
5.
Neuro Oncol ; 21(11): 1458-1469, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31346613

ABSTRACT

BACKGROUND: Glioblastoma (GBM) represents an aggressive cancer type with a median survival of only 14 months. With fewer than 5% of patients surviving 5 years, comprehensive profiling of these rare patients could elucidate prognostic biomarkers that may confer better patient outcomes. We utilized multiple molecular approaches to characterize the largest patient cohort of isocitrate dehydrogenase (IDH)-wildtype GBM long-term survivors (LTS) to date. METHODS: Retrospective analysis was performed on 49 archived formalin-fixed paraffin embedded tumor specimens from patients diagnosed with GBM at the Mayo Clinic between December 1995 and September 2013. These patient samples were subdivided into 2 groups based on survival (12 LTS, 37 short-term survivors [STS]) and subsequently examined by mutation sequencing, copy number analysis, methylation profiling, and gene expression. RESULTS: Of the 49 patients analyzed in this study, LTS were younger at diagnosis (P = 0.016), more likely to be female (P = 0.048), and MGMT promoter methylated (UniD, P = 0.01). IDH-wildtype STS and LTS demonstrated classic GBM mutations and copy number changes. Pathway analysis of differentially expressed genes showed LTS enrichment for sphingomyelin metabolism, which has been linked to decreased GBM growth, invasion, and angiogenesis. STS were enriched for DNA repair and cell cycle control networks. CONCLUSIONS: While our findings largely report remarkable similarity between these LTS and more typical STS, unique attributes were observed in regard to altered gene expression and pathway enrichment. These attributes may be valuable prognostic markers and are worth further examination. Importantly, this study also underscores the limitations of existing biomarkers and classification methods in predicting patient prognosis.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Survivors/statistics & numerical data , Adult , Aged , Aged, 80 and over , DNA Methylation , Epigenesis, Genetic , Female , Follow-Up Studies , Gene Expression Profiling , Glioblastoma/pathology , Glioblastoma/surgery , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Transcriptome , Young Adult
6.
Neuro Oncol ; 21(4): 451-461, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30624711

ABSTRACT

BACKGROUND: Twenty-five single nucleotide polymorphisms (SNPs) are associated with adult diffuse glioma risk. We hypothesized that the inclusion of these 25 SNPs with age at diagnosis and sex could estimate risk of glioma as well as identify glioma subtypes. METHODS: Case-control design and multinomial logistic regression were used to develop models to estimate the risk of glioma development while accounting for histologic and molecular subtypes. Case-case design and logistic regression were used to develop models to predict isocitrate dehydrogenase (IDH) mutation status. A total of 1273 glioma cases and 443 controls from Mayo Clinic were used in the discovery set, and 852 glioma cases and 231 controls from UCSF were used in the validation set. All samples were genotyped using a custom Illumina OncoArray. RESULTS: Patients in the highest 5% of the risk score had more than a 14-fold increase in relative risk of developing an IDH mutant glioma. Large differences in lifetime absolute risk were observed at the extremes of the risk score percentile. For both IDH mutant 1p/19q non-codeleted glioma and IDH mutant 1p/19q codeleted glioma, the lifetime risk increased from almost null to 2.3% and almost null to 1.7%, respectively. The SNP-based model that predicted IDH mutation status had a validation concordance index of 0.85. CONCLUSIONS: These results suggest that germline genotyping can provide new tools for the initial management of newly discovered brain lesions. Given the low lifetime risk of glioma, risk scores will not be useful for population screening; however, they may be useful in certain clinically defined high-risk groups.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/classification , Brain Neoplasms/pathology , Case-Control Studies , Female , Genotype , Glioma/classification , Glioma/pathology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Young Adult
7.
Acta Neuropathol ; 137(2): 307-319, 2019 02.
Article in English | MEDLINE | ID: mdl-30584643

ABSTRACT

Meningeal solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) is a rare tumor with propensity for recurrence and metastasis. Although multiple classification schemes have been proposed, optimal risk stratification remains unclear, and the prognostic impact of fusion status is uncertain. We compared the 2016 WHO CNS tumor grading scheme (CNS-G), a three-tier system based on histopathologic phenotype and mitotic count, to the 2013 WHO soft-tissue counterpart (ST-G), a two-tier system based on mitotic count alone, in a cohort of 133 patients [59 female, 74 male; mean age 54 years (range 20-87)] with meningeal SFT/HPC. Tumors were pathologically confirmed through review of the first tumor resection (n = 97), local recurrence (n = 35), or distant metastasis (n = 1). A STAT6 immunostain showed nuclear expression in 132 cases. NAB2-STAT6 fusion was detected in 99 of 111 successfully tested tumors (89%) including the single STAT6 immunonegative tumor. Tumors were classified by CNS-G as grade 1 (n = 43), 2 (n = 41), or 3 (n = 49), and by ST-G as SFT (n = 84) or malignant SFT (n = 49). Necrosis was present in 16 cases (12%). On follow-up, 42 patients had at least one subsequent recurrence or metastasis (7 metastasis only, 33 recurrence only, 2 patients had both). Twenty-nine patients died. On univariate analysis, necrosis (p = 0.002), CNS-G (p = 0.01), and ST-G (p = 0.004) were associated with recurrence-free (RFS) but not overall survival (OS). NAB2-STAT6 fusion type was not significantly associated with RFS or OS, but was associated with phenotype. A modified ST-G incorporating necrosis showed higher correlation with RFS (p = 0.0006) and remained significant (p = 0.02) when considering only the primary tumors. From our data, mitotic rate and necrosis appear to stratify this family of tumors most accurately and could be incorporated in a future grading scheme.


Subject(s)
Hemangiopericytoma/pathology , Meningeal Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Repressor Proteins/metabolism , Adolescent , Adult , Aged , Female , Gene Fusion/genetics , Hemangiopericytoma/genetics , Humans , Male , Middle Aged , Neoplasm Grading , Repressor Proteins/genetics , Solitary Fibrous Tumors/pathology , Young Adult
8.
Brain Pathol ; 28(2): 172-182, 2018 03.
Article in English | MEDLINE | ID: mdl-28181325

ABSTRACT

Pleomorphic xanthoastrocytoma (PXA) is a rare localized glioma characterized by frequent BRAF V600E mutation and CDKN2A/B deletion. We explored the association of copy-number variants (CNVs) with BRAF mutations, tumor grade, and patient survival in a cohort of 41 PXA patients using OncoScan chromosomal microarray. Primary resection specimens were available in 38 cases, including 24 PXA and 14 anaplastic PXA (A-PXA), 23 BRAF V600E mutant tumors (61%). CNVs were identified in all cases and most frequently involved chromosome 9 with homozygous CDKN2A/B deletion (n = 33, 87%), a higher proportion than previously detected by comparative genomic hybridization (50%-60%) (37). CDKN2A/B deletion was present in similar proportion of PXA (83%), A-PXA (93%), BRAF V600E (87%), and wild-type (87%) tumors. Whole chromosome gains/losses were frequent, including gains +7 (n = 15), +2 (n = 11), +5 (n = 10), +21 (n = 10), +20 (n = 9), +12 (n = 8), +15 (n = 8), and losses -22 (n = 11), -14 (n = 7), -13 (n = 5). Losses and copy-neutral loss of heterozygosity were significantly more common in A-PXA, involving chromosomes 22 (P = 0.009) and 14 (P = 0.03). Amplification of 8p and 12q was identified in a single tumor. Histologic grade was a robust predictor of overall survival (P = 0.003), while other copy-number changes, including CDKN2A/B deletion, did not show significant association with survival. Distinct histologic patterns of anaplasia included increased mitotic activity in an otherwise classic PXA or associated with small cell, fibrillary, or epithelioid morphology, with loss of SMARCB1 expression in one case. In 10 cases, matched specimens were compared, including A-PXA with areas of distinct low- and high-grade morphology (n = 2), matched primary/tumor recurrence (n = 7), or both (n = 1). Copy-number changes on recurrence/anaplastic transformation were complex and highly variable, from nearly identical profiles to numerous copy-number changes. Overall, we confirm CDKN2A/B deletion as key a feature of PXA not associated with tumor grade or BRAF mutation, but central to the underlying genetics of PXA.


Subject(s)
Cerebellar Neoplasms/genetics , DNA Copy Number Variations , Glioma/genetics , Proto-Oncogene Proteins B-raf/genetics , Supratentorial Neoplasms/genetics , Adolescent , Adult , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/surgery , Child , Child, Preschool , Chromosome Aberrations , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , Female , Follow-Up Studies , Glioma/mortality , Glioma/pathology , Glioma/surgery , Humans , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local , SMARCB1 Protein/metabolism , Supratentorial Neoplasms/mortality , Supratentorial Neoplasms/pathology , Supratentorial Neoplasms/surgery , Young Adult
10.
Oncotarget ; 6(30): 30295-305, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26210286

ABSTRACT

BACKGROUND: Epigenetic, genetic, and molecular studies have identified several diagnostic and prognostic markers in diffuse gliomas. Their importance for evaluating WHO grade II gliomas has yet to be specifically delineated. METHODS: We analyzed markers, including IDH mutation(IDHmut), 1p19q codeletion(1p19qcodel), ATRX expression loss(ATRX loss) and p53 overexpression, and outcomes in 159 patients with WHO grade II oligodendroglioma, oligoastrocytoma, and astrocytoma (2003-2012). RESULTS: IDHmut was found in 141(91%) and ATRX loss in 64(87%) of IDHmut-noncodel tumors (p = 0.003). All codeleted tumors (n = 66) were IDHmut. Four subgroups were identified: IDHmut-codel, 66(43%); IDHmut-noncodel-ATRX loss, 60(39%); IDHmut-noncodel-ATRXwt, 9(6%); IDHwt, 14(9%). Median survival among 4 groups was significantly different (p = 0.038), particularly in IDHmut-codel (median survival 15.6 years) compared to the remaining 3 groups (p = 0.025). Survival by histology was not significant. Overall (OS), but not progression-free (PFS), survival was significantly longer with gross total resection vs. biopsy only (p = 0.042). Outcomes for patients with subtotal resection were not significantly different from those with biopsy only. Among these uniformly treated patients, OS far exceeds PFS, particularly in those with 1p/19q codeletion. CONCLUSIONS: For WHO grade II diffuse glioma, molecular classification using 1p/19qcodel, IDHmut, and ATRX loss more accurately predicts outcome and should be incorporated in the neuropathologic evaluation.


Subject(s)
Biomarkers, Tumor/deficiency , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Chromosome Deletion , Chromosomes, Human, Pair 1 , DNA Helicases/deficiency , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Nuclear Proteins/deficiency , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , Brain Neoplasms/enzymology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/therapy , DNA Mutational Analysis , Disease Progression , Disease-Free Survival , Female , Genetic Predisposition to Disease , Glioma/enzymology , Glioma/mortality , Glioma/pathology , Glioma/therapy , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Phenotype , Registries , Retrospective Studies , Time Factors , Tumor Suppressor Protein p53/analysis , X-linked Nuclear Protein , Young Adult
11.
N Engl J Med ; 372(26): 2499-508, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26061753

ABSTRACT

BACKGROUND: The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. METHODS: We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. RESULTS: Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triple-positive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. CONCLUSIONS: Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. (Funded by the National Institutes of Health and others.).


Subject(s)
Chromosomes, Human, Pair 19 , Chromosomes, Human, Pair 1 , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Telomerase/genetics , Adult , Age of Onset , Biomarkers, Tumor , DNA Mutational Analysis , DNA, Neoplasm/analysis , Female , Germ-Line Mutation , Glioma/classification , Glioma/mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Promoter Regions, Genetic , Proportional Hazards Models
12.
Brain Pathol ; 25(5): 575-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25318587

ABSTRACT

Prognostic significance of histological anaplasia and BRAF V600E mutation were retrospectively evaluated in 74 patients with pleomorphic xanthoastrocytoma (PXA). Median age at diagnosis was 21.5 years (31 pediatric, 43 adult) and median follow-up 7.6 years. Anaplasia (PXA-AF), defined as mitotic index ≥ 5/10 HPF and/or presence of necrosis, was present in 33 cases. BRAF V600E mutation was detected in 39 (of 60) cases by immunohistochemical and/or molecular analysis, all negative for IDH1 (R132H). Mitotic index ≥ 5/10 HPF and necrosis were associated with decreased overall survival (OS; P = 0.0005 and P = 0.0002, respectively). In all cases except two, necrosis was associated with mitotic index ≥ 5/10 HPF. Patients with BRAF V600E mutant tumors had significantly longer OS compared with those without BRAF V600E mutation (P = 0.02). PXA-AF patients, regardless of age, had significantly shorter OS compared with those without (P = 0.0003). Recurrence-free survival was significantly shorter for adult PXA-AF patients (P = 0.047) only. Patients who either recurred or died ≤ 3 years from diagnosis were more likely to have had either PXA-AF at first diagnosis (P = 0.008) or undergone a non-gross total resection procedure (P = 0.004) as compared with patients who did not. This study provides further evidence that PXA-AF behaves more aggressively than PXA and may qualify for WHO grade III "anaplastic" designation.


Subject(s)
Astrocytoma/diagnosis , Brain Neoplasms/diagnosis , Adolescent , Adult , Aged , Anaplasia , Astrocytoma/genetics , Astrocytoma/mortality , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Child , Child, Preschool , Disease-Free Survival , Female , Follow-Up Studies , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Young Adult
13.
Acta Neuropathol Commun ; 1: 20, 2013 May 30.
Article in English | MEDLINE | ID: mdl-24252190

ABSTRACT

BACKGROUND: High frequencies of the BRAF V600E mutation have been reported in pleomorphic xanthoastrocytoma (PXA). Recently, a BRAF V600E mutation-specific antibody has been developed and validated. We evaluated the immunohistochemical (IHC) detection of BRAF V600E mutation in PXA by comparing to gold standard molecular analysis and investigating the interobserver variability of the IHC scoring. We performed BRAF V600E IHC in 46 cases, of which 37 (80%) cases had sufficient tumor tissue for molecular analysis. IHC detection was performed using monoclonal mouse antibody VE1 (Spring Bioscience). IHC slides were scored independently by four reviewers blind to molecular data, including a primary (gold standard) and three additional reviewers. BRAF V600E mutation status was assessed by allele-specific polymerase chain reaction (PCR) with fragment analysis. RESULTS: All 46 cases showed interpretable BRAF V600E IHC results: 27 (59%) were positive (strong cytoplasmic staining), 19 (41%) were negative (6 of these cases with focal/diffuse weak cytoplasmic staining, interpreted as nonspecific by the primary reviewer). By molecular analysis, all 37 cases that could be tested had evaluable results: 22 (59%) cases were positive for BRAF V600E mutation and were scored as "IHC-positive", and 15 (41%) were negative (including 11 cases scored as "IHC-negative" and 4 cases scored as negative with minimal nonspecific staining). IHC detection of BRAF V600E mutant protein was congruent in all 37 cases that were successfully evaluated by molecular testing (sensitivity and specificity of 100%). Agreement for IHC scoring among the 4 reviewers was almost perfect (kappa 0.92) when cases were scored as "positive/negative" and substantial (kappa 0.78) when minimal nonspecific staining was taken into account. CONCLUSIONS: We conclude that detection of BRAF V600E mutation by immunohistochemistry is highly sensitive and specific. BRAF V600E IHC interpretation is usually straightforward, but awareness of possible nonspecific staining is necessary and training is recommended. It is a practical rapid method that may avoid the need of labor-intensive molecular testing and may be most valuable in small biopsies unsuitable for molecular analysis.


Subject(s)
Astrocytoma/diagnosis , Astrocytoma/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Immunohistochemistry/methods , Proto-Oncogene Proteins B-raf/genetics , Astrocytoma/metabolism , Astrocytoma/pathology , Biomarkers, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Humans , Mutation, Missense , Point Mutation , Polymerase Chain Reaction , Proto-Oncogene Proteins B-raf/metabolism , Reproducibility of Results , Sensitivity and Specificity
14.
Neuro Oncol ; 15(5): 535-41, 2013 May.
Article in English | MEDLINE | ID: mdl-23361564

ABSTRACT

INTRODUCTION: Recent discoveries of inherited glioma risk loci and acquired IDH mutations are providing new insights into glioma etiology. IDH mutations are common in lower grade gliomas and secondary glioblastomas and uncommon in primary glioblastomas. Because the inherited variant in 11q23 has been associated with risk of lower grade glioma and not with glioblastomas, we hypothesized that this variant increases susceptibility to IDH-mutated gliomas, but not to IDH-wild-type gliomas. METHODS: We tested this hypothesis in patients with glioma and controls from the San Francisco Adult Glioma Study, the Mayo Clinic, and Illumina controls (1102 total patients, 5299 total controls). Case-control additive associations of 11q23 risk alleles (rs498872, T allele) were calculated using logistic regression, stratified by tumor IDH status (mutated or wild-type) and by histology and grade. We also adjusted for the recently discovered 8q24 glioma risk locus rs55705857 G allele. RESULTS: The 11q23 glioma risk locus was associated with increased risk of IDH-mutated gliomas of all histologies and grades (odds ratio [OR] = 1.50; 95% confidence interval [CI] = 1.29-1.74; P = 1.3X10(-7)) but not with IDH-wild-type gliomas of any histology or grade (OR = 0.91; 95% CI = 0.81-1.03; P = 0.14). The associations were independent of the rs55705857 G allele. CONCLUSION: A variant at the 11q23 locus increases risk for IDH-mutated but not IDH-wild-type gliomas, regardless of grade or histology.


Subject(s)
Brain Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Genetic Predisposition to Disease , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Adult , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Case-Control Studies , Chromosomes, Human, Pair 8/genetics , Female , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Polymorphism, Single Nucleotide/genetics , Prognosis
15.
Nat Genet ; 44(10): 1122-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22922872

ABSTRACT

Variants at 8q24.21 have been shown to be associated with glioma development. By means of tag SNP genotyping and imputation, pooled next-generation sequencing using long-range PCR and subsequent validation SNP genotyping, we identified seven low-frequency SNPs at 8q24.21 that were strongly associated with glioma risk (P=1×10(-25) to 1×10(-14)). The most strongly associated SNP, rs55705857, remained highly significant after individual adjustment for the other top six SNPs and two previously published SNPs. After stratifying by histological and tumor genetic subtype, the most significant associations of rs55705857 were with oligodendroglial tumors and gliomas with mutant IDH1 or IDH2 (odds ratio (OR)=5.1, P=1.1×10(-31) and OR=4.8, P=6.6×10(-22), respectively). Strong associations were observed for astrocytomas with mutated IDH1 or IDH2 (grades 2-4) (OR=5.16-6.66, P=4.7×10(-12) to 2.2×10(-8)) but not for astrocytomas with wild-type IDH1 and IDH2 (smallest P=0.26). The conserved sequence block that includes rs55705857 is consistently modeled as a microRNA.


Subject(s)
Astrocytoma/genetics , Chromosomes, Human, Pair 8 , Genetic Predisposition to Disease , Isocitrate Dehydrogenase/genetics , Oligodendroglioma/genetics , Adult , Aged , Astrocytoma/enzymology , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Oligodendroglioma/enzymology , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Risk Factors , Sequence Analysis, DNA
16.
Development ; 139(3): 514-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22190638

ABSTRACT

Cilia are essential for normal development. The composition and assembly of cilia has been well characterized, but the signaling and transcriptional pathways that govern ciliogenesis remain poorly studied. Here, we report that Wnt/ß-catenin signaling directly regulates ciliogenic transcription factor foxj1a expression and ciliogenesis in zebrafish Kupffer's vesicle (KV). We show that Wnt signaling acts temporally and KV cell-autonomously to control left-right (LR) axis determination and ciliogenesis. Specifically, reduction of Wnt signaling leads to a disruption of LR patterning, shorter and fewer cilia, a loss of cilia motility and a downregulation of foxj1a expression. However, these phenotypes can be rescued by KV-targeted overexpression of foxj1a. In comparison to the FGF pathway that has been previously implicated in the control of ciliogenesis, our epistatic studies suggest a more downstream function of Wnt signaling in the regulation of foxj1a expression and ciliogenesis in KV. Importantly, enhancer analysis reveals that KV-specific expression of foxj1a requires the presence of putative Lef1/Tcf binding sites, indicating that Wnt signaling activates foxj1a transcription directly. We also find that impaired Wnt signaling leads to kidney cysts and otolith disorganization, which can be attributed to a loss of foxj1 expression and disrupted ciliogenesis in the developing pronephric ducts and otic vesicles. Together, our data reveal a novel role of Wnt/ß-catenin signaling upstream of ciliogenesis, which might be a general developmental mechanism beyond KV. Moreover, our results also prompt a hypothesis that certain developmental effects of the Wnt/ß-catenin pathway are due to the activation of Foxj1 and cilia formation.


Subject(s)
Cilia/metabolism , Cytoskeletal Proteins/metabolism , Forkhead Transcription Factors/biosynthesis , Kupffer Cells/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wnt3A Protein/metabolism , Zebrafish Proteins/metabolism , beta Catenin/metabolism , Animals , Body Patterning/genetics , Cell Movement , Cytoskeletal Proteins/genetics , Down-Regulation , Embryo, Nonmammalian/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Otolithic Membrane/metabolism , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Proteins/genetics , Wnt3A Protein/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...