Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuropathol Exp Neurol ; 69(6): 582-92, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20467333

ABSTRACT

One of the major pathophysiological features of malignant astrocytomas is their ability to infiltrate surrounding brain tissue. The epidermal growth factor receptor (EGFR) and proteases are known to be overexpressed in glioblastomas (GBMs), but the interaction between the activation of the EGFR and urokinase plasminogen activator (uPA) in promoting astrocytic tumor invasion has not been fully elucidated. Here, we characterized the signal transduction pathway(s) by which EGF regulates uPA expression and promotes astrocytoma invasion. We show that EGFR activation and constitutively active EGFR vIII in GBM cell lines upregulate uPA expression. Small-molecule inhibitors of mitogen-activated protein kinase, tyrosine kinase, and small interfering RNA targeting c-Src blocked uPA upregulation. Similarly, mutations in the activator protein 1 binding site of the uPA promoter reduced EGF-induced increases in uPA promoter activity. Treatment of GBM cells with EGF increased in vitro cell invasion, and the invasive phenotype was attenuated by gene silencing of uPA using small interfering RNA and short hairpin RNA. In addition, uPA knockdown clones formed smaller well-circumscribed tumors than nontarget U1242 control cells in a xenograft GBM mouse model in vivo. In summary, these results suggest that c-Src, mitogen-activated protein kinase, and a composite activator protein 1 on the uPA promoter are responsible for EGF-induced uPA expression and GBM invasion.


Subject(s)
Cell Movement/drug effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Glioblastoma/metabolism , MAP Kinase Signaling System/drug effects , Transcription Factor AP-1/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Blotting, Northern , Blotting, Western , Cell Line , Cells, Cultured , ErbB Receptors/genetics , Humans , Image Processing, Computer-Assisted , MAP Kinase Signaling System/physiology , Magnetic Resonance Imaging , Mice , Promoter Regions, Genetic/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering , Time Factors , Transcription Factor AP-1/genetics , Transfection , Transplantation, Heterologous , Urokinase-Type Plasminogen Activator/genetics
2.
Am J Pathol ; 176(6): 3032-49, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20413683

ABSTRACT

The lack of an intracranial human glioma model that recapitulates the extensive invasive and hypervascular features of glioblastoma (GBM) is a major hurdle for testing novel therapeutic approaches against GBM and studying the mechanism of GBM invasive growth. We characterized a high matrix metalloproteinase-9 (MMP-9) expressing U1242 MG intracranial xenograft mouse model that exhibited extensive individual cells and cell clusters in a perivascular and subpial cellular infiltrative pattern, geographic necrosis and infiltrating tumor-induced vascular proliferation closely resembling the human GBM phenotype. MMP-9 silencing cells with short hairpin RNA dramatically blocked the cellular infiltrative pattern, hypervascularity, and cell proliferation in vivo, and decreased cell invasion, colony formation, and cell motility in vitro, indicating that a high level of MMP-9 plays an essential role in extensive infiltration and hypervascularity in the xenograft model. Moreover, epidermal growth factor (EGF) failed to stimulate MMP-9 expression, cell invasion, and colony formation in MMP-9-silenced clones. An EGF receptor (EGFR) kinase inhibitor, a RasN17 dominant-negative construct, MEK and PI3K inhibitors significantly blocked EGF/EGFR-stimulated MMP-9, cell invasion, and colony formation in U1242 MG cells, suggesting that MMP-9 is involved in EGFR/Ras/MEK and PI3K/AKT signaling pathway-mediated cell invasion and anchorage-independent growth in U1242 MG cells. Our data indicate that the U1242 MG xenograft model is valuable for studying GBM extensive invasion and angiogenesis as well as testing anti-invasive and anti-angiogenic therapeutic approaches.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Glioblastoma , Matrix Metalloproteinase 9/metabolism , Transplantation, Heterologous , Animals , Astrocytes/cytology , Astrocytes/metabolism , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Male , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction/physiology , ras Proteins/metabolism
3.
Glia ; 56(8): 917-24, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18383343

ABSTRACT

Previous study reported that the activation of Ras pathway cooperated with E6/E7-mediated inactivation of p53/pRb to transform immortalized normal human astrocytes (NHA/hTERT) into intracranial tumors strongly resembling human astrocytomas. The mechanism of how H-Ras contributes to astrocytoma formation is unclear. Using genetically modified NHA cells (E6/E7/hTERT and E6/E7/hTERT/Ras cells) as models, we investigated the mechanism of Ras-induced tumorigenesis. The overexpression of constitutively active H-RasV12 in E6/E7/hTERT cells robustly increased the levels of urokinase plasminogen activator (uPA) mRNA, protein, activity and invasive capacity of the E6/E7/hTERT/Ras cells. However, the expressions of MMP-9 and MMP-2 did not significantly change in the E6/E7/hTERT and E6/E7/hTERT/Ras cells. Furthermore, E6/E7/hTERT/Ras cells also displayed higher level of uPA activity and were more invasive than E6/E7/hTERT cells in 3D culture, and formed an intracranial tumor mass in a NOD-SCID mouse model. uPA specific inhibitor (B428) and uPA neutralizing antibody decreased uPA activity and invasion in E6/E7/hTERT/Ras cells. uPA-deficient U-1242 glioblastoma cells were less invasive in vitro and exhibited reduced tumor growth and infiltration into normal brain in xenograft mouse model. Inhibitors of Ras (FTA), Raf (Bay 54-9085) and MEK (UO126), but not of phosphatidylinositol 3-kinase (PI3K) (LY294002) and of protein kinase C (BIM) pathways, inhibited uPA activity and cell invasion. Our results suggest that H-Ras increased uPA expression and activity via the Ras/Raf/MEK signaling pathway leading to enhanced cell invasion and this may contribute to increased invasive growth properties of astrocytomas.


Subject(s)
Astrocytes/physiology , Mitogen-Activated Protein Kinases/physiology , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction/physiology , Urokinase-Type Plasminogen Activator/metabolism , Analysis of Variance , Animals , Brain Neoplasms/pathology , Cells, Cultured , Disease Models, Animal , Gene Expression Regulation/physiology , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Transfection/methods , ras Proteins/metabolism
4.
Cancer Res ; 67(21): 10241-51, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17974965

ABSTRACT

Aggressive and infiltrative invasion is one of the hallmarks of glioblastoma. Low-density lipoprotein receptor-related protein (LRP) is expressed by glioblastoma, but the role of this receptor in astrocytic tumor invasion remains poorly understood. We show that activation of protein kinase C-alpha (PKC-alpha) phosphorylated and down-regulated LRP expression. Pretreatment of tumor cells with PKC inhibitors, phosphoinositide 3-kinase (PI3K) inhibitor, PKC-alpha small interfering RNA (siRNA), and short hairpin RNA abrogated phorbol 12-myristate 13-acetate-induced down-regulation of LRP and inhibited astrocytic tumor invasion in vitro. In xenograft glioblastoma mouse model and in vitro transmembrane invasion assay, LRP-deficient cells, which secreted high levels of urokinase-type plasminogen activator (uPA), invaded extensively the surrounding normal brain tissue, whereas the LRP-overexpressing and uPA-deficient cells did not invade into the surrounding normal brain. siRNA, targeted against uPA in LRP-deficient clones, attenuated their invasive potential. Taken together, our results strongly suggest the involvement of PKC-alpha/PI3K signaling pathways in the regulation of LRP-mediated astrocytoma invasion. Thus, a strategy of combining small molecule inhibitors of PKC-alpha and PI3K could provide a new treatment paradigm for glioblastomas.


Subject(s)
Astrocytoma/pathology , Low Density Lipoprotein Receptor-Related Protein-1/physiology , Protein Kinase C-alpha/physiology , Urokinase-Type Plasminogen Activator/physiology , Animals , Astrocytoma/therapy , Cell Line, Tumor , Cell Movement , Humans , Immunoprecipitation , Male , Mice , Mice, SCID , Neoplasm Invasiveness , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase C-alpha/antagonists & inhibitors , Tetradecanoylphorbol Acetate/pharmacology
5.
Circulation ; 108(3): 336-41, 2003 Jul 22.
Article in English | MEDLINE | ID: mdl-12835208

ABSTRACT

BACKGROUND: Angiogenesis is a critical determinant of tumor growth and metastasis. We hypothesized that contrast-enhanced ultrasound (CEU) with microbubbles targeted to alpha(v)-integrins expressed on the neovascular endothelium could be used to image angiogenesis. METHODS AND RESULTS: Malignant gliomas were produced in 14 athymic rats by intracerebral implantation of U87MG human glioma cells. On day 14 or day 28 after implantation, CEU was performed with microbubbles targeted to alpha(v)beta3 by surface conjugation of echistatin. CEU perfusion imaging with nontargeted microbubbles was used to derive tumor microvascular blood volume and blood velocity. Vascular alpha(v)-integrin expression was assessed by immunohistochemistry, and microbubble adhesion was characterized by confocal microscopy. Mean tumor size increased markedly from 14 to 28 days (2+/-1 versus 35+/-14 mm2, P<0.001). Tumor blood volume increased by approximately 35% from day 14 to day 28, whereas microvascular blood velocity decreased, especially at the central portions of the tumors. On confocal microscopy, alpha(v)beta3-targeted but not control microbubbles were retained preferentially within the tumor microcirculation. CEU signal from alpha(v)beta3-targeted microbubbles in tumors increased significantly from 14 to 28 days (1.7+/-0.4 versus 3.3+/-1.0 relative units, P<0.05). CEU signal from alpha(v)beta3-targeted microbubbles was greatest at the periphery of tumors, where alpha(v)-integrin expression was most prominent, and correlated well with tumor microvascular blood volume (r=0.86). CONCLUSIONS: CEU with microbubbles targeted to alpha(v)beta3 can noninvasively detect early tumor angiogenesis. This technique, when coupled with changes in blood volume and velocity, may provide insights into the biology of tumor angiogenesis and be used for diagnostic applications.


Subject(s)
Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Contrast Media/administration & dosage , Glioblastoma/blood supply , Glioblastoma/diagnostic imaging , Integrin alphaVbeta3/metabolism , Neovascularization, Pathologic/diagnostic imaging , Animals , Biotin/chemistry , Blood Flow Velocity , Brain Neoplasms/pathology , Contrast Media/chemistry , Glioblastoma/pathology , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins , Microcirculation/metabolism , Microcirculation/pathology , Neoplasm Transplantation , Peptides/chemistry , Peptides/metabolism , Predictive Value of Tests , Rats , Rats, Nude , Sensitivity and Specificity , Transplantation, Heterologous , Ultrasonography
6.
Neuro Oncol ; 4(1): 9-21, 2002 01.
Article in English | MEDLINE | ID: mdl-11772428

ABSTRACT

Both increased cell proliferation and apoptosis play important roles in the malignant growth of glioblastomas. We have demonstrated recently that the differential expression of protein kinase C (PKC)-eta increases the proliferative capacity of glioblastoma cells in culture; however, specific functions for this novel PKC isozyme in the regulation of apoptosis in these tumors has not been defined. In the present study of several glioblastoma cell lines, we investigated the role of PKC-eta in preventing UV- and gamma-irradiation-induced apoptosis and in caspase-dependent signaling pathways that mediate cell death. Exposure to UV or gamma irradiation killed 80% to 100% of PKC-eta-deficient nonneoplastic human astrocytes and U-1242 MG cells, but had little effect on the PKC-eta-expressing U-251 MG and U-373 MG cells. PKC-eta appears to mediate resistance to irradiation specifically such that when PKC-eta was stably expressed in U-1242 MG cells, more than 80% of these cells developed resistance to irradiation-induced apoptosis. Reducing PKC-eta expression by transient and stable expression of antisense PKC-eta in wild-type U-251 MG cells results in increased sensitivity to UV irradiation in a fashion similar to U-1242 MG cells and nonneoplastic astrocytes. Irradiation of PKC-eta-deficient glioblastoma cells resulted in the activation of caspase-9 and caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and a substantial increase in subdiploid DNA content that did not occur in PKC-eta-expressing tumor cells. A specific inhibitor (Ac-DEVD-CHO) of caspase-3 blocked apoptosis in PKC-eta-deficient U-1242 MG cells. The data demonstrate that resistance to UV and gamma irradiation in glioblastoma cell lines is modified significantly by PKC-eta expression and that PKC-eta appears to block the apoptotic cascade at caspase-9 activation.


Subject(s)
Apoptosis/physiology , Caspases/metabolism , Enzyme Activation/radiation effects , Gamma Rays , Glioblastoma/physiopathology , Isoenzymes/physiology , Protein Kinase C/physiology , Ultraviolet Rays , Apoptosis/drug effects , Astrocytes/drug effects , Astrocytes/radiation effects , Caspase 9 , Coloring Agents , DNA/metabolism , Humans , Isoenzymes/deficiency , Isoenzymes/genetics , Isoenzymes/pharmacology , Propidium , Protein Kinase C/deficiency , Protein Kinase C/genetics , Protein Kinase C/pharmacology , Staining and Labeling , Transfection , Tumor Cells, Cultured/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...