Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475493

ABSTRACT

Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.

3.
BMC Complement Med Ther ; 22(1): 264, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224581

ABSTRACT

BACKGROUND: The development of multidrug resistance (MDR) associated with the overexpression of the efflux transporters Mdr1 and Cdr1 in Candida species impedes antifungal therapies. The urgent need for novel agents able to inhibit the function of both pumps, led us to evaluate this property in 137 extracts obtained from Argentinian plants. METHODS: The ability of the extracts to reverse efflux pump-mediated MDR was determined with an agar chemosensitization assay using fluconazole (FCZ) resistant Mdr1- and Cdr1-overexpressing clinical isolates of Candida albicans and Candida glabrata as well as Saccharomyces cerevisiae strains selectively expressing Mdr1 (AD/CaMDR1) or Cdr1 (AD/CaCDR1). The resistance-reversing activity of the most potent extracts was further confirmed using a Nile Red accumulation assay. RESULTS: Fifteen plant extracts overcame the FCZ resistance of Candida albicans 1114, which overexpresses CaMdr1 and CaCdr1, and AD/CaMDR1, with those from Acalypha communis and Solanum atriplicifolium being the most effective showing 4- to 16-fold reversal of resistance at concentrations ≥ 25 µg/mL. Both extracts, and to a lesser extent that from Pterocaulon alopecuroides, also restored FCZ sensitivity in CgCdr1-overexpressing C. glabrata 109 and in AD/CaCDR1 with fold reversal values ranging from 4 to 32 and therefore demonstrating a dual effect against Mdr1 and Cdr1. Both, A. communis and S. atriplicifolium extracts at concentrations ≥ 12.5 and ≥ 25 µg/mL, respectively, increased the intracellular Nile Red accumulation in all yeast strains overexpressing efflux pumps. CONCLUSIONS: The non-toxic and highly active extracts from A. communis and S. atripicifolium, provide promising sources of compounds for potentiating the antifungal effect of FCZ by blocking the efflux function of Mdr1 and Cdr1 transporters.


Subject(s)
Candida , Fluconazole , Agar/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans , Drug Resistance, Fungal , Fluconazole/pharmacology , Membrane Transport Proteins , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Saccharomyces cerevisiae
4.
Antibiotics (Basel) ; 10(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34943747

ABSTRACT

Enzymes MurA and MurF, involved in bacterial cell wall synthesis, have been validated as targets for the discovery of novel antibiotics. A panel of plant-origin antibacterial diterpenes and synthetic analogs derived therefrom were investigated for their inhibitory properties on these enzymes from Escherichia coli and Staphylococcus aureus. Six compounds were proven to be effective for inhibiting MurA from both bacteria, with IC50 values ranging from 1.1 to 25.1 µM. To further mechanistically investigate the nature of binding and to explain the activity, these compounds were docked into the active site of MurA from E. coli. The aromatic ring of the active compounds showed a T-shaped π-π interaction with the phenyl ring of Phe328, and at least one hydrogen bond was formed between the hydroxy groups and Arg120 and/or Arg91. The results disclosed here establish new chemical scaffolds for the development of novel entities targeting MurA as potential antibiotics to combat the threat of pathogenic bacteria, particularly resistant strains.

5.
Antibiotics (Basel) ; 10(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34572635

ABSTRACT

The development of new antifungal agents that target biofilms is an urgent need. Natural products, mainly from the plant kingdom, represent an invaluable source of these entities. The present review provides an update (2017-May 2021) on the available information on essential oils, propolis, extracts from plants, algae, lichens and microorganisms, compounds from different natural sources and nanosystems containing natural products with the capacity to in vitro or in vivo modulate fungal biofilms. The search yielded 42 articles; seven involved essential oils, two Brazilian propolis, six plant extracts and one of each, extracts from lichens and algae/cyanobacteria. Twenty articles deal with the antibiofilm effect of pure natural compounds, with 10 of them including studies of the mechanism of action and five dealing with natural compounds included in nanosystems. Thirty-seven manuscripts evaluated Candida spp. biofilms and two tested Fusarium and Cryptococcus spp. Only one manuscript involved Aspergillus fumigatus. From the data presented here, it is clear that the search of natural products with activity against fungal biofilms has been a highly active area of research in recent years. However, it also reveals the necessity of deepening the studies by (i) evaluating the effect of natural products on biofilms formed by the newly emerged and worrisome health-care associated fungi, C. auris, as well as on other non-albicans Candida spp., Cryptococcus sp. and filamentous fungi; (ii) elucidating the mechanisms of action of the most active natural products; (iii) increasing the in vivo testing.

6.
Sci Rep ; 11(1): 16856, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413359

ABSTRACT

P-gp-associated multidrug resistance is a major impediment to the success of chemotherapy. With the aim of finding non-toxic and effective P-gp inhibitors, we investigated a panel of quinolin-2-one-pyrimidine hybrids. Among the active compounds, two of them significantly increased intracellular doxorubicin and rhodamine 123 accumulation by inhibiting the efflux mediated by P-gp and restored doxorubicin toxicity at nanomolar range. Structure-activity relationships showed that the number of methoxy groups, an optimal length of the molecule in its extended conformation, and at least one flexible methylene group bridging the quinolinone to the moiety bearing the pyrimidine favored the inhibitory potency of P-gp. The best compounds showed a similar binding pattern and interactions to those of doxorubicin and tariquidar, as revealed by MD and hybrid QM/MM simulations performed with the recent experimental structure of P-gp co-crystallized with paclitaxel. Analysis of the molecular interactions stabilizing the different molecular complexes determined by MD and QTAIM showed that binding to key residues from TMH 4-7 and 12 is required for inhibition.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Drug Resistance, Multiple/drug effects , Pyrimidines/pharmacology , Quinolones/pharmacology , Cell Death/drug effects , Humans , K562 Cells , Molecular Dynamics Simulation , Protein Transport/drug effects , Pyrimidines/chemistry , Pyrimidines/toxicity , Quinolones/chemistry , Quinolones/toxicity , Rhodamine 123/metabolism , Structure-Activity Relationship , Thermodynamics
7.
Front Pharmacol ; 11: 593845, 2020.
Article in English | MEDLINE | ID: mdl-33424604

ABSTRACT

Several plants from South America show strong antitumoral properties based on anti-proliferative and/or pro-apoptotic activities. In this work we aimed to identify selective cytotoxic compounds that target BRCA1-deficient cancer cells by Synthetic Lethality (SL) induction. Using a high-throughput screening technology developed in our laboratory, we analyzed a collection of extracts from 46 native plant species from Argentina using a wide dose-response scheme. A highly selective SL-induction capacity was found in an alkaloidal extract from Zanthoxylum coco (Fam. Rutaceae). Bio-guided fractionation coupled to HPLC led to the identification of active benzophenanthridine alkaloids. The most potent SL activity was found with the compound oxynitidine, which showed a remarkably low relative abundance in the active fractions. Further validation experiments were performed using the commercially available and closely related analog nitidine, which showed SL-induction activity against various BRCA1-deficient cell lines with different genetic backgrounds, even in the nanomolar range. Exploration of the underlying mechanism of action using BRCA1-KO cells revealed AKT and topoisomerases as the potential targets responsible of nitidine-triggered SL-induction. Taken together, our findings expose an unforeseen therapeutic activity of alkaloids from Zanthoxylum-spp. that position them as novel lead molecules for drug discovery.

8.
Future Med Chem ; 11(24): 3109-3124, 2019 12.
Article in English | MEDLINE | ID: mdl-31838897

ABSTRACT

Aim: To find alternative compounds against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA), novel derivatives from dehydroabietic acid were synthesized. Methods & results: Compound 12 was the most effective against 15 MRSA and 11 MSSA with minimum inhibitory concentration values ranging from 3.9 to 15.6 µg/ml. Although less active than 12, compound 11, followed by 25 and 13, also exhibited anti-staphylococcal activity. Additional studies showed that compound 12 is devoid of toxic effect on non-target cells. A structure-activity relationship study revealed that an oxime at C-13 together with a hydroxyl at C-12 could play a key role in the activity. Conclusion: These structures, in particular compound 12, could arise as templates for the development of agents against MRSA and MSSA.


Subject(s)
Abietanes/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Abietanes/chemistry , Abietanes/pharmacology , Abietanes/toxicity , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Cell Survival/drug effects , Cells, Cultured , Chromosome Aberrations/chemically induced , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Microbial Sensitivity Tests , Molecular Structure , Onions/drug effects , Onions/genetics , Structure-Activity Relationship
9.
J Ethnopharmacol ; 239: 111930, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31059749

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The mostly native species from Argentina are used in traditional medicine generally for the treatment of pain and inflammation, respiratory, gastro-intestinal and urinary disorders and as antiseptics. AIM OF THE STUDY: Since these ailments may be associated with bacterial infections and that it is necessary to discover alternative compounds with antibacterial activity, 69 extracts from these plants were screened for their activity against pathogenic bacteria. The most effective extract was then submitted to bioguided isolation to obtain the compounds responsible for this activity. MATERIALS AND METHODS: Extracts and fractions were screened using agar dilution, and compounds using microbroth dilution methods. A large panel of pathogenic bacteria was used, especially methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Bioguided fractionation was performed using successive chromatographic techniques, while the chemical structures of the isolated compounds were determined by nuclear magnetic resonance (NMR). Additionally, a series of derivatives of the most active compound were prepared in order to study the chemical features required for achieving the antibacterial effect. RESULTS: Lepechinia meyenii (Walp.) Epling (Lamiaceae) extract showed itself the most effective, with minimum inhibitory concentration (MIC) against Gram positive and negative bacteria ranging from 62.5 to 500 µg/mL, and showing better activity on MRSA than on MSSA. Activity-guided fractionation yielded the abietanes carnosol (1), rosmanol (2) and carnosic acid (3) as active principles, with MICs ranging from 15.6-31.2, 15.6-62.5 and 7.8-15.6 µg/mL, respectively against 15 MRSA strains, and 15.6-31.2, 31.2-62.5 and 7.8-15.6 µg/mL, respectively against 11 MSSA strains, maintaining higher activity against the resistant bacteria, as does the extract. In addition, Enterococcus faecalis was sensitive to 1-3 with MICs of 15.6-62.5 µg/mL. The structure activity analysis showed that 12-OH is necessary for remarkable activity, but methylation in C-20 significantly increased this, as observed with 20-methyl carnosate (5) displaying the greatest effect, even more so than 3, with MICs of 3.9 µg/mL against all the tested MRSA and 3.9-7.8 µg/mL against the MSSA. CONCLUSIONS: The results of this study contribute to validate the traditional antibacterial use of species native to Argentina, particularly of L. meyenii. The chemical structures of the compounds obtained may aid the design of antibacterial agents, especially those effective against MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lamiaceae , Plant Extracts/pharmacology , Argentina , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Plants, Medicinal
10.
Food Chem Toxicol ; 125: 383-391, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30684603

ABSTRACT

To contribute enzymatic browning inhibitors to the food industry and also extend knowledge about the phytochemical profile of the anti-tyrosinase plant Lepechinia meyenii, its ethanol extract was subjected to bioguided fractionation. Three hydroxycinnamic acids, p-coumaric acid (1), caffeic acid (2) and rosmarinic acid (3), were isolated as mainly responsible for its activity. Compounds 1, 2 and 3 showed themselves highly effective for inhibiting tyrosinase with IC50 values of 0.30, 1.50 and 4.14 µM, respectively, for monophenolase activity and 0.62, 2.30 and 8.59 µM, respectively for diphenolase activity. This is the first report describing the isolation of the compounds causing the tyrosinase inhibitory activity of L. meyenii extract. The inhibitory kinetics of 1-3 using both L-tyrosine and L-DOPA as substrates was investigated and the results obtained were discussed at molecular level by docking analysis. The resulting compounds 1-3 and a phenolic-enriched fraction of the extract, 2.9-fold more active than the starting material, may be suitable as non-toxic and inexpensive alternatives for the control of deleterious enzymatic darkening.


Subject(s)
Coumaric Acids/chemistry , Enzyme Inhibitors/chemistry , Lamiaceae/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Agaricales/enzymology , Catalytic Domain , Coumaric Acids/isolation & purification , Coumaric Acids/toxicity , Enzyme Assays , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/toxicity , Humans , Kinetics , Molecular Docking Simulation , Monophenol Monooxygenase/chemistry
11.
Front Plant Sci ; 9: 1579, 2018.
Article in English | MEDLINE | ID: mdl-30420868

ABSTRACT

Essential oils, which are mixtures of terpenes, frequently show stronger insecticide activity, i.e., lower lethal dose 50 (LC50), than their most abundant terpenes. Synergy between terpenes provides a plausible explanation, but its demonstration has been elusive. In the present work, we look for an alternative explanation, by considering the influence of insect metabolic detoxification. Basically, we propose a model (metabolic model, MM) in which the LC50 of the major terpene in a mixture is expected to include a fraction that is detoxified by the insect, whereas a minor terpene would act unimpeded, showing a lower LC50 than when acting alone. In order to test this idea, we analyzed the effects of inhibiting the cytochrome P450 detoxification system with piperonyl butoxide (PBO), on the lethal concentration of terpenes as fumigants against Musca domestica. We found that, within a group of 10 terpenes [linalool, citronellal, (R)-α-pinene, 1,8-cineole, γ-terpinene, limonene, α-terpinene, (S)-ß-pinene, thymol and (R)-pulegone], seven showed the LC50PBO (the lethal concentration for PBO-treated flies) between 1.7 and 12.4 times lower than the corresponding LC50 when P450 was not inhibited. Only in one case, that of (R)-pulegone, was the LC50PBO greater than the LC50, while two terpenes [(S)-ß-pinene and thymol] showed no changes in toxicity. The increased activity of most terpenes (particularly linalool and citronellal) in PBO-treated flies supports our hypothesis that normally the LC50 includes a fraction of inactive compound, due to detoxification. Having previously determined that M. domestica preferentially oxidizes the most abundant terpene in a mixture, while terpenes in smaller proportions are poorly or not detoxified by the P450 system, we assessed whether the toxicity of minority terpenes in a mixture is similar to their activity under P450 inhibition. We chose suitable binary combinations in such a way that one terpene (in greater proportion) should be the target of P450 while the other (in smaller proportion) should intoxicate the fly with LC50PBO or similar. Combinations of 1,8-cineole-citronellal, 1,8-cineole-linalool, linalool-citronellal, (R)-pulegone-linalool, (R)-pulegone-1,8-cineole and (R)-pulegone-citronellal were assayed against M. domestica, and the LC50 of each mixture was determined and compared to values predicted by MM (considering the LC50PBO for minor component) or by the classical approach (LC50 for both components). The MM showed the best fit to the data, suggesting additive rather than synergistic effects, except for the combination of (R)-pulegone-citronellal that was clearly synergistic. Thus, the experimental data indicate that the insect preferentially oxidizes the major component in a mixture, while the terpene in lesser proportion acts as a toxicant, with higher toxicity than when it was assayed alone. These findings contribute to a deeper understanding of the higher toxicity of essential oils compared to their component terpenes and provide important information for the design of effective insecticides based on essential oils or terpenes.

12.
Article in English | MEDLINE | ID: mdl-29861776

ABSTRACT

Plants are a significant reservoir of cytotoxic agents, including compounds with the ability to interfere with multidrug-resistant (MDR) cells. With the aim of finding promising candidates for chemotherapy, 91 native and naturalized plants collected from the central region of Argentina were screened for their cytotoxic effect toward sensitive and MDR P-glycoprotein (P-gp) overexpressing human leukemia cells by means of MTT assays. The ethanol extracts obtained from Aldama tucumanensis, Ambrosia elatior, Baccharis artemisioides, Baccharis coridifolia, Dimerostemma aspilioides, Gaillardia megapotamica, and Vernonanthura nudiflora presented outstanding antiproliferative activity at 50 µg/mL, with inhibitory values from 93 to 100%, when tested on the acute lymphoblastic leukemia (ALL) cell line CCRF-CEM and the resistant derivative CEM-ADR5000, while 70-90% inhibition was observed against the chronic myelogenous leukemia (CML) cell K562 and its corresponding resistant subline, Lucena 1. Subsequent investigation showed these extracts to possess marked cytotoxicity with IC50 values ranging from 0.37 to 29.44 µg/mL, with most of them being below 7 µg/mL and with ALL cells, including the drug-resistant phenotype, being the most affected. G. megapotamica extract found to be one of the most effective and bioguided fractionation yielded helenalin (1). The sesquiterpene lactone displayed IC50 values of 0.63, 0.19, 0.74, and 0.16 µg/mL against K562, CCRF-CEM, Lucena 1, and CEM/ADR5000, respectively. These results support the potential of these extracts as a source of compounds for treating sensitive and multidrug-resistant leukemia cells and support compound 1 as a lead for developing effective anticancer agents.

13.
Food Chem Toxicol ; 109(Pt 2): 888-897, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28465189

ABSTRACT

This work examines the antitumor activity of an isomeric mixture (1), composed of the limonoids meliartenin and its interchangeable isomer 12-hydroxyamoorastatin. The results obtained showed that 1 displayed outstanding cytotoxic activity against CCRF-CEM, K562, A549 and HCT116 cells, with a highly selective effect on the latter, with an IC50 value of 0.2 µM. Based on this finding, HCT116 cells were selected to study the mechanism of action of 1. Cell cycle analysis revealed that 1 induced sustained arrest in the S-phase, which was followed by the triggering of apoptotic cell death and reduced clonogenic capacity. This cytotoxicity was seen to be preceded by the upregulation of the tumor suppressor p53 and its target effector p21. In addition, it was found that p53 expression was required for efficient cell death induction, and thus that the toxicity of 1 relies mainly on p53-dependent mechanisms. Taken together, these findings position 1 as a potent antitumor agent, with potential for the development of novel chemotherapeutic drugs based on the induction of S-phase arrest.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/physiopathology , Limonins/pharmacology , Melia azedarach/chemistry , Plant Extracts/pharmacology , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , HCT116 Cells , Humans , Limonins/chemistry , Plant Extracts/chemistry , Tumor Suppressor Protein p53/genetics
14.
Planta Med ; 81(15): 1382-91, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26291655

ABSTRACT

The enzyme 4-hydroxyphenylpyruvate dioxygenase catalyzes the second step in the tyrosine degradation pathway. In mammals, this enzyme is the molecular target of drugs used for the treatment of metabolic disorders associated with defects in the tyrosine catabolism, mainly the fatal hereditary disease tyrosinemia type 1. This study evaluated the inhibitory effect of 91 extracts on 4-hydroxyphenylpyruvate dioxygenase from mostly native plants from central Argentina. Flourensia oolepis ethanol extract showed itself to be the most effective, and bioguided fractionation yielded pinocembrin (1) as its active principle. This flavanone, with an IC50 value of 73.1 µM and a KI of 13.7 µM, behaved as a reversible inhibitor of the enzyme and as a noncompetitive inhibitor. Molecular modeling studies confirmed the inhibitory potency of 1 and explained its activity by means of in silico determination of its binding mode in comparison to inhibitors of known activity, cocrystallized with 4-hydroxyphenylpyruvate dioxygenase. The main structural determinants that confer its potency are discussed. Analysis of the binding mode of the flavanone 1 with 4-hydroxyphenylpyruvate dioxygenase revealed the basis of the noncompetitive reversible mechanism of inhibition at the molecular level, which seems to be a common feature in this ubiquitous family of natural compounds. The resulting information may establish the basis for obtaining novel 4-hydroxyphenylpyruvate dioxygenase inhibitors for the treatment of tyrosinemia type 1 and other disorders associated with tyrosinase catabolism.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Asteraceae/chemistry , Enzyme Inhibitors/pharmacology , Flavanones/pharmacology , Animals , Argentina , Enzyme Inhibitors/isolation & purification , Flavanones/chemistry , Flavanones/isolation & purification , Models, Molecular , Molecular Structure , Swine
15.
Article in English | MEDLINE | ID: mdl-26819623

ABSTRACT

The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 µg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1-5 was determined by MTT assay on acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) cell lines including their multidrug resistant (MDR) phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6-9.9 µM) and a lower effect against CML cells (IC50 = 27.5-30.0 µM). Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

16.
Phytomedicine ; 20(3-4): 258-61, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23207251

ABSTRACT

As part of our ongoing research on the antibacterial activity of Achyrocline satureioides, this study seeks to better understand the interactions between the metabolites isolated from this plant. For this purpose, the combined effect of 23-methyl-6-O-desmethylauricepyrone (1), quercetin (2) and 3-O-methylquercetin (3), obtained through bioguided fractionation from A. satureioides ethanol extract, was evaluated against Staphylococcus aureus and Escherichia coli. In first place, the antibacterial effect of the combination of flavonols 2 and 3 was assessed, as these showed individual effectiveness lower than or equal to that of the fraction from which they were obtained. When the flavonols were applied together at concentrations below their minimum inhibitory concentration (MIC) values, a synergistic effect (FICI<0.30) against S. aureus was observed. In addition, compounds 2 and 3 in combination reduced 1000 times the MIC of compound 1, showing a clear synergistic interaction (FICI<0.15) in treatments against the Gram (+) bacterium. The most active combination against E. coli showed an additive interaction (FICI<0.62) between the three assayed compounds 1-3. These results indicated the existence of concerted action between these metabolites, evidence of the importance of the synergistic interactions between the components of plant-derived extracts for the control of pathogenic bacteria.


Subject(s)
Achyrocline/chemistry , Anti-Bacterial Agents/isolation & purification , Drug Interactions , Escherichia coli/drug effects , Microbial Sensitivity Tests , Phytotherapy , Plants, Medicinal/chemistry , Staphylococcus aureus/drug effects
17.
Bioorg Med Chem ; 19(11): 3474-82, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21561780

ABSTRACT

To aid the pharmaceutical and cosmetic industry in the development of alternatives to prevent melanin-related hyperpigmentation disorders, the plant Dalea elegans was submitted to fractionation with the aim of obtaining its anti-tyrosinase principle. Bioguided fractionation of D. elegans led to the isolation of 5,2',4'-trihydroxy-2″,2″-dimethylchromene-(6,7:5″,6″)-flavanone (1) as the active compound. This novel flavanone, named as dalenin, showed notable activity at inhibiting tyrosinase using l-tyrosine or l-DOPA as substrates with IC(50) values of 0.26 and 18.61 µM, respectively. This meant that the flavanone was 52 and 495 times more effective as a monophenolase inhibitor than hydroquinone and kojic acid, respectively. With l-DOPA as a substrate, compound 1 showed itself 59 times more effective at inhibiting the enzyme than hydroquinone and showed the same level of effectiveness as that of kojic acid. It was found that the flavanone behaved as a reversible inhibitor of the enzyme and that it was a mixed-I type or a non-competitive inhibitor with l-tyrosine or l-DOPA as substrates, respectively. Molecular modeling studies were conducted confirming the inhibitory potency of dalenin and showing that the 2',4'-dihydroxy substituents are important for the interaction with the enzyme. The results suggest that compound 1 has great potential to be further developed as a pharmaceutical and cosmetic agent for use in dermatological disorders associated with melanin.


Subject(s)
Enzyme Inhibitors/chemistry , Fabaceae/chemistry , Flavanones/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Agaricales/enzymology , Binding Sites , Computer Simulation , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Flavanones/isolation & purification , Flavanones/pharmacology , Kinetics , Monophenol Monooxygenase/metabolism , Terpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...