Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Adv Mater ; : e2401349, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657644

ABSTRACT

Phonon polaritons, the hybrid quasiparticles resulting from the coupling of photons and lattice vibrations, have gained significant attention in the field of layered van der Waals heterostructures. Particular interest has been paid to hetero-bicrystals composed of molybdenum oxide (MoO3) and hexagonal boron nitride (hBN), which feature polariton dispersion tailorable via avoided polariton mode crossings. In this work, we systematically study the polariton eigenmodes in MoO3-hBN hetero-bicrystals self-assembled on ultrasmooth gold using synchrotron infrared nanospectroscopy. We experimentally demonstrate that the spectral gap in bicrystal dispersion and corresponding regimes of negative refraction can be tuned by material layer thickness, and we quantitatively match these results with a simple analytic model. We also investigate polaritonic cavity modes and polariton propagation along "forbidden" directions in our microscale bicrystals, which arise from the finite in-plane dimension of the synthesized MoO3 micro-ribbons. Our findings shed light on the unique dispersion properties of polaritons in van der Waals heterostructures and pave the way for applications leveraging deeply sub-wavelength mid-infrared light matter interactions. This article is protected by copyright. All rights reserved.

2.
ACS Photonics ; 10(12): 4329-4339, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38145170

ABSTRACT

While near-field infrared nanospectroscopy provides a powerful tool for nanoscale material characterization, broadband nanospectroscopy of elementary material excitations in the single-digit terahertz (THz) range remains relatively unexplored. Here, we study liquid-Helium-cooled photoconductive Hg1-XCdXTe (MCT) for use as a fast detector in near-field nanospectroscopy. Compared to the common T = 77 K operation, liquid-Helium cooling reduces the MCT detection threshold to ∼22 meV, improves the noise performance, and yields a response bandwidth exceeding 10 MHz. These improved detector properties have a profound impact on the near-field technique, enabling unprecedented broadband nanospectroscopy across a range of 5 to >50 THz (175 to >1750 cm-1, or <6 to 57 µm), i.e., covering what is commonly known as the "THz gap". Our approach has been implemented as a user program at the National Synchrotron Light Source II, Upton, USA, where we showcase ultrabroadband synchrotron nanospectroscopy of phonons in ZnSe (∼7.8 THz) and BaF2 (∼6.7 THz), as well as hyperbolic phonon polaritons in GeS (6-8 THz).

4.
Nat Nanotechnol ; 18(12): 1409-1415, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605044

ABSTRACT

Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.

5.
BMC Pediatr ; 21(1): 467, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686176

ABSTRACT

BACKGROUND: Over 90% of the 50,000 deaf children in the UK have hearing parents, many of whom were not expecting a deaf child and may require specialist support. Deaf children can experience poorer long-term outcomes than hearing children across a range of domains. After early detection by the Universal Newborn Hearing Screening Programme, parents in the UK receive support from Qualified Teachers of the Deaf and audiologists but resources are tight and intervention support can vary by locality. There are challenges faced due to a lack of clarity around what specific parenting support interventions are most helpful. METHODS: The aim of this research was to complete a systematic scoping review of the evidence to identify early support interventions for parents of deaf infants. From 5577 identified records, 54 met inclusion criteria. Two reviewers screened papers through three rounds before completing data extraction and quality assessment. RESULTS: Identified parent support interventions included both group and individual sessions in various settings (including online). They were led by a range of professionals and targeted various outcomes. Internationally there were only five randomised controlled trials. Other designs included non-randomised comparison groups, pre / post and other designs e.g. longitudinal, qualitative and case studies. Quality assessment showed few high quality studies with most having some concerns over risk of bias. CONCLUSION: Interventions commonly focused on infant language and communication followed by parental knowledge and skills; parent wellbeing and empowerment; and parent/child relationship. There were no interventions that focused specifically on parent support to understand or nurture child socio-emotional development despite this being a well-established area of poor outcome for deaf children. There were few UK studies and research generally was not of high quality. Many studies were not recent and so not in the context of recent healthcare advances. Further research in this area is urgently needed to help develop evidence based early interventions.


Subject(s)
Parenting , Parents , Child , Child Development , Communication , Humans , Infant , Infant, Newborn , Parent-Child Relations
6.
Nat Commun ; 12(1): 2649, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33976184

ABSTRACT

Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators.

7.
Regul Toxicol Pharmacol ; 123: 104933, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33891999

ABSTRACT

Derivation of Predicted No Effect Concentrations (PNECs) for aquatic systems is the primary deterministic form of hazard extrapolation used in environmental risk assessment. Depending on the data availability, different regulatory jurisdictions apply application factors (AFs) to the most sensitive measured endpoint to derive the PNEC for a chemical. To assess differences in estimated PNEC values, two PNEC determination methodologies were applied to a curated public database using the EnviroTox Platform (www.EnviroToxdatabase.org). PNECs were derived for 3647 compounds using derivation procedures based on example US EPA and a modified European Union chemical registration procedure to allow for comparisons. Ranked probability distributions of PNEC values were developed and 5th percentile values were calculated for the entire dataset and scenarios where full acute or full chronic data sets were available. The lowest PNEC values indicated categorization based on chemical attributes and modes of action would lead to improved extrapolations. Full acute or chronic datasets gave measurably higher 5th percentile PNEC values. Algae were under-represented in available ecotoxicity data but drove PNECs disproportionately. Including algal inhibition studies will be important in understanding chemical hazards. The PNEC derivation logic flows are embedded in the EnviroTox Platform providing transparent and consistent PNEC derivations and PNEC distribution calculations.


Subject(s)
Hazardous Substances/toxicity , Toxicity Tests, Chronic/methods , Animals , Databases, Factual , Logic , No-Observed-Adverse-Effect Level , Probability , Risk Assessment , Water Pollutants, Chemical
8.
Nat Commun ; 10(1): 5235, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748506

ABSTRACT

Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90[Formula: see text] ferroelectric) domain walls in the hybrid improper ferroelectric Ca[Formula: see text]Ti[Formula: see text]O[Formula: see text]. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.

9.
Environ Toxicol Chem ; 38(7): 1514-1525, 2019 07.
Article in English | MEDLINE | ID: mdl-30994946

ABSTRACT

We propose a framework on sample size for species sensitivity distribution (SSD) analyses, with perspectives on Bayesian, frequentist, and even nonparametric approaches to estimation. The intent of a statistical sample size analysis is to ensure that the implementation of a statistical model will satisfy a minimum performance standard when relevant conditions are met. It requires that a statistical model be fully specified and that the means of measuring its performance as a function of sample size be detailed. Defining the model conditions under which sample size is calculated is often the most difficult, and important, aspect of sample size analysis because if the model is not representative, then the sample size analysis will provide incorrect guidance. Definitive guidance on sample size requires general agreement on representative models and their performance from stakeholders in important domains such as chemical safety assessments involving government regulators and industry; the present study provides an initial framework that could be used to this end in the future. In addition, our analysis provides immediate value for understanding how well current SSD analyses perform under a few basic models, sample sizes, and quantitative performance criteria. The results confirm that many analyses are adequately sized to estimate hazardous concentration percentile values (typically the 5th percentile for chemical hazard assessments). However, on the low end of sizes seen in common practice, hazardous concentration estimates can be more than 1 order of magnitude greater than the model-defined value. Environ Toxicol Chem 2019;38:1514-1525. © 2019 SETAC.


Subject(s)
Models, Statistical , Hazardous Substances/chemistry , Logistic Models , Monte Carlo Method , Risk Assessment , Statistics, Nonparametric
10.
Environ Toxicol Chem ; 38(7): 1526-1541, 2019 07.
Article in English | MEDLINE | ID: mdl-30994956

ABSTRACT

Application factors are routinely applied in the extrapolation of laboratory aquatic toxicity data to ensure protection from exposure to chemicals in the natural environment. The magnitude of the application factor is both a scientific and a policy decision, but in any case, it should be rooted in scientific knowledge so as to not be arbitrary. Information-rich chemicals are often subjected to species sensitivity distribution (SSD) analysis to transparently describe certain aspects of assessment uncertainty and are normally subjected to much smaller application factors than screening information data sets. We describe a new set of tools useful to assess the quality of SSDs. Twenty-two data sets and 19 chemicals representing agrochemicals, biocides, surfactants, metals, and common wastewater contaminants were compiled to demonstrate how the tools can be used. "Add-one-in" and "leave-one-out" simulations were used to investigate SSD robustness and develop quantitative evidence for the use of application factors. Theoretical new toxicity data were identified for add-one-in simulations based on the expected probabilities necessary to lower the hazardous concentration to 5% of a species (HC5) by a factor of 2, 3, 5, or 10. Simulations demonstrate the basis for application factors in the range of 1 to 5 for well-studied chemicals with high-quality SSDs. Leave-one-out simulations identify the fact that the most influential values in the SSD come from the extremes of the sensitive and tolerant toxicity values. Mesocosm and field data consistently demonstrate that HC5s are conservative, further justifying the use of small application factors for high-quality SSDs. Environ Toxicol Chem 2019;38:1526-1541. © 2019 SETAC.


Subject(s)
Biostatistics , Hazardous Substances/chemistry , Disinfectants/chemistry , Disinfectants/toxicity , Hazardous Substances/toxicity , Metals/chemistry , Metals/toxicity , Risk Assessment , Software , Surface-Active Agents/chemistry , Surface-Active Agents/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
11.
J Am Med Inform Assoc ; 23(6): 1185-1189, 2016 11.
Article in English | MEDLINE | ID: mdl-27094989

ABSTRACT

OBJECTIVE: To develop a secure, efficient, and easy-to-use data collection platform to measure the prevalence of sepsis in Wales over 24 hours. MATERIALS AND METHODS: Open Data Kit was used on Android devices with Google App Engine and a digital data collection form. RESULTS: A total of 184 students participated in the study using 59 devices across 16 hospitals, 1198 datasets were submitted, and 97% of participants found the Open Data Kit form easy to use. DISCUSSION: We successfully demonstrated that by combining a reliable Android device, a free open-source data collection framework, a scalable cloud-based server, and a team of 184 medical students, we can deliver a low-cost, highly reliable platform that requires little training or maintenance, providing results immediately on completion of data collection. CONCLUSION: Our platform allowed us to measure, for the first time, the prevalence of sepsis in Wales over 24 hours.


Subject(s)
Data Collection/methods , Mobile Applications , Sepsis/epidemiology , Education, Medical , Humans , Prevalence , Students, Medical , Wales/epidemiology
12.
J Sports Sci ; 34(6): 501-8, 2016.
Article in English | MEDLINE | ID: mdl-26700131

ABSTRACT

Positional variation in match performance is well established in elite soccer but no information exists on players switching positions. This study investigated the influence of elite players interchanging from one position to another on physical and technical match performance. Data were collected from multiple English Premier League (EPL) seasons using a computerised tracking system. After adhering to stringent inclusion criteria, players were examined across several interchanges: central-defender to fullback (CD-FB, n = 11, 312 observations), central-midfielder to wide-midfielder (CM-WM, n = 7, 171 observations), wide-midfielder to central-midfielder (WM-CM, n = 7, 197 observations) and attacker to wide-midfielder (AT-WM, n = 4, 81 observations). Players interchanging from CD-FB covered markedly more high-intensity running and sprinting distance (effect size [ES]: -1.56 and -1.26), lost more possessions but made more final third entries (ES: -1.23 and -1.55). Interchanging from CM-WM and WM-CM resulted in trivial to moderate differences in both physical (ES: -0.14-0.59 and -0.21-0.39) and technical performances (ES: -0.48-0.64 and -0.36-0.54). Players interchanging from AT-WM demonstrated a moderate difference in high-intensity running without possession (ES: -0.98) and moderate-to-large differences in the number of clearances, tackles and possessions won (ES: -0.77, -1.16 and -1.41). The data demonstrate that the physical and technical demands vary greatly from one interchange to another but utility players seem able to adapt to these positional switches.


Subject(s)
Athletic Performance/physiology , Competitive Behavior/physiology , Motor Skills/physiology , Soccer/physiology , England , Humans , Running/physiology , Time and Motion Studies
13.
Phys Rev Lett ; 113(9): 096401, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215996

ABSTRACT

The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb(1-x)Sn(x)Se (x=0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase gives rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus, our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.

14.
Phys Rev Lett ; 111(15): 155701, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24160613

ABSTRACT

We report the observation of two signatures of a pressure-induced topological quantum phase transition in the polar semiconductor BiTeI using x-ray powder diffraction and infrared spectroscopy. The x-ray data confirm that BiTeI remains in its ambient-pressure structure up to 8 GPa. The lattice parameter ratio c/a shows a minimum between 2.0-2.9 GPa, indicating an enhanced c-axis bonding through p(z) band crossing as expected during the transition. Over the same pressure range, the infrared spectra reveal a maximum in the optical spectral weight of the charge carriers, reflecting the closing and reopening of the semiconducting band gap. Both of these features are characteristics of a topological quantum phase transition and are consistent with a recent theoretical proposal.

15.
Anal Chem ; 85(7): 3599-605, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23458231

ABSTRACT

Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction-limited spatial resolution can be achieved when an apertured, single-pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multipixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multipixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of 2, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real-time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time.


Subject(s)
Microscopy/instrumentation , Spectroscopy, Fourier Transform Infrared/instrumentation , Synchrotrons/instrumentation , Animals , Equipment Design , Mice , Spinal Cord/chemistry , Spinal Cord/ultrastructure
16.
Rev Sci Instrum ; 84(2): 023901, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464221

ABSTRACT

We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm(-1). Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of θ-2θ angular rotation, χ tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 × 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability µ ≠ 1. A nonlinear regression of the rotating analyzer ellipsometry and∕or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with µ ≠ 1 are illustrated with experimental results and simulations for TbMnO3 and Dy3Fe5O12 single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO3.

17.
Phys Rev Lett ; 108(15): 156801, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22587273

ABSTRACT

The in-plane optical phonons around 200 meV in few-layer graphene are investigated utilizing infrared absorption spectroscopy. The phonon spectra exhibit unusual asymmetric features characteristic of Fano resonances, which depend critically on the layer thickness and stacking order of the sample. The phonon intensities in samples with rhombohedral (ABC) stacking are significantly higher than those with Bernal (AB) stacking. These observations reflect the strong coupling between phonons and interband electronic transitions in these systems and the distinctive variation in the joint density of electronic states in samples of differing thickness and stacking order.

18.
Anal Chem ; 84(8): 3607-13, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22455306

ABSTRACT

Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 µm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm(-1) in transmission-based to 1035/1025 cm(-1) in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.


Subject(s)
Bone and Bones/chemistry , Microspectrophotometry , Spectroscopy, Fourier Transform Infrared , Animals , Bone and Bones/ultrastructure , Mice
19.
Phys Rev Lett ; 107(20): 204801, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22181737

ABSTRACT

We report the generation of tunable, narrow-band, few-cycle and multicycle coherent terahertz (THz) pulses from a temporally modulated relativistic electron beam. We demonstrate that the frequency of the THz radiation and the number of the oscillation cycles of the THz electric field can be tuned by changing the modulation period of the electron beam through a temporally shaped photocathode drive laser. The central frequency of the THz spectrum is tunable from ∼0.26 to 2.6 THz with a bandwidth of ∼0.16 THz.

20.
Inorg Chem ; 50(13): 6347-52, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21644536

ABSTRACT

We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F(2)(H(2)O)(2). Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H···F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

SELECTION OF CITATIONS
SEARCH DETAIL