Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6694): 453-458, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662833

ABSTRACT

Governments recently adopted new global targets to halt and reverse the loss of biodiversity. It is therefore crucial to understand the outcomes of conservation actions. We conducted a global meta-analysis of 186 studies (including 665 trials) that measured biodiversity over time and compared outcomes under conservation action with a suitable counterfactual of no action. We find that in two-thirds of cases, conservation either improved the state of biodiversity or at least slowed declines. Specifically, we find that interventions targeted at species and ecosystems, such as invasive species control, habitat loss reduction and restoration, protected areas, and sustainable management, are highly effective and have large effect sizes. This provides the strongest evidence to date that conservation actions are successful but require transformational scaling up to meet global targets.


Subject(s)
Biodiversity , Conservation of Natural Resources , Extinction, Biological , Introduced Species , Animals , Ecosystem
2.
Glob Chang Biol ; 20(7): 2221-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24677405

ABSTRACT

Shifts in species' distribution and abundance in response to climate change have been well documented, but the underpinning processes are still poorly understood. We present the results of a systematic literature review and meta-analysis investigating the frequency and importance of different mechanisms by which climate has impacted natural populations. Most studies were from temperate latitudes of North America and Europe; almost half investigated bird populations. We found significantly greater support for indirect, biotic mechanisms than direct, abiotic mechanisms as mediators of the impact of climate on populations. In addition, biotic effects tended to have greater support than abiotic factors in studies of species from higher trophic levels. For primary consumers, the impact of climate was equally mediated by biotic and abiotic mechanisms, whereas for higher level consumers the mechanisms were most frequently biotic, such as predation or food availability. Biotic mechanisms were more frequently supported in studies that reported a directional trend in climate than in studies with no such climatic change, although sample sizes for this comparison were small. We call for more mechanistic studies of climate change impacts on populations, particularly in tropical systems.


Subject(s)
Biota , Climate Change , Animals , Birds/physiology , Europe , Fishes/physiology , Invertebrates/physiology , Mammals/physiology , North America , Plant Physiological Phenomena , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL