Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985843

ABSTRACT

The study aimed to determine the enhanced effects of essential oils (EOs) and plant-derived molecules (PDMs) as penetration enhancers (PEs) for transdermal drug delivery (TDD) of caffeine. A 1% w/w solution of eight EOs and seven PDMs was included in the 1% caffeine carbopol hydrogel. Franz diffusion cell experiments were performed using mice with full-thickness skin. At various times over 24 h, 300 µL of the receptor were withdrawn and replaced with fresh medium. Caffeine was analyzed spectrophotometrically at 272 nm. The skin irritation effects of the hydrogels applied once a day for 21 days were investigated in mice. The steady-state flux (JSS) of the caffeine hydrogel was 30 ± 19.6 µg cm-2 h-1. An increase in caffeine JSS was induced by Lippia origanoides > Turnera diffusa > eugenol > carvacrol > limonene, with values of 150 ± 14.1, 130 ± 47.6, 101 ± 21.7, 90 ± 18.4, and 86 ± 21.0 µg cm-2 h-1, respectively. The Kp of caffeine was 2.8 ± 0.26 cm h-1, almost 2-4 times lower than that induced by Lippia origanoides > Turnera diffusa > limonene > eugenol > carvacrol, with Kp values of 11 ± 1.7, 8.8 ± 4.2, 6.8 ± 1.7, 6.3 ± 1.2, and 5.15 ± 1.0 cm h-1, respectively. No irritating effects were observed. Lippia origanoides, Turnera diffusa, eugenol, carvacrol, and limonene improved caffeine's skin permeation. These compounds may be as effective as the PE in TDD systems.


Subject(s)
Oils, Volatile , Mice , Animals , Oils, Volatile/pharmacology , Limonene , Eugenol , Colombia , Caffeine , Administration, Cutaneous , Hydrogels
2.
Sci Rep ; 10(1): 258, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937812

ABSTRACT

Polymers such as polycaprolactone (PCL) possess biodegradability, biocompatibility and affinity with other organic media that makes them suitable for biomedical applications. In this work, a novel biocomposite coating was synthesised by mixing PCL with layers of calcium phosphate (hydroxyapatite, brushite and monetite) from a biomineral called otolith extracted from Teleost fish (Plagioscion Squamosissimus) and multiwalled carbon nanotubes in different concentrations (0.5, 1.0 and 1.5 g/L). The biocomposite coating was deposited on an osteosynthesis material Ti6Al4V by spin coating and various tests such as Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scratch tests, MTT reduction cytotoxicity, HOS cell bioactivity (human osteosarcoma) by alkaline phosphatase (ALP) and fluorescence microscopy were performed to comprehensively evaluate the newly developed biocoating. It was found that an increase in the concentration of carbon nanotube induced microstructural phase changes of calcium phosphate (CP) leading to the formation of brushite, monetite and hydroxyapatite. While we discovered that an increase in the concentration of carbon nanotube generally improves the adhesion of the coating with the substrate, a certain threshold exists such that the best deposition surfaces were obtained as PCL/CP/CNT 0.0 g/L and PCL/CP/CNT 0.5 g/L.


Subject(s)
Coated Materials, Biocompatible/chemistry , Fishes/metabolism , Otolithic Membrane/metabolism , Alkaline Phosphatase/metabolism , Alloys , Animals , Calcium Phosphates/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Coated Materials, Biocompatible/toxicity , Humans , Materials Testing , Microscopy, Electron, Scanning , Nanotubes, Carbon/chemistry , Otolithic Membrane/chemistry , Polyesters/chemistry , Spectroscopy, Fourier Transform Infrared , Titanium/chemistry
3.
Exp Parasitol ; 194: 45-52, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30257189

ABSTRACT

Ultradeformable liposomes (UDLs) containing sodium cholate as edge activator could be an appropriate skin drug-delivery system for chloroaluminum phthalocyanine (ClAlPc) during photodynamic therapy (PDT) against cutaneous leishmaniasis (CL). The aim of this work was to study cell internalization, reactive oxygen species (ROS) production, and toxicity/genotoxicity and transdermal delivery of UDL-ClAlPc, and to determine whether PDT was able to induce anti-leishmanial activity in Leishmania (Viannia) braziliensis experimental models. Prepared liposomes had an average size of 118.39 nm, zeta potential of -37.83 mV, and polydispersity index of 0.15. Liposomal internalization (red fluorescence inside cells), ROS generation (green fluorescence by 2,7-dichlorodihydrofluorescein diacetate [DCFH-DA] cleavage) and non-specific DNA damage (photo-comets) were observed after PDT. Transdermal delivery of ClAlPc, measured by in vitro diffusion experiments through BALB/c skin, showed that UDL-ClAlPc was able to deliver very low quantities of ClAlPc (<1%) to deep skin layers. PDT using UDL-ClAlPc induced photodamage in mammalian cells (J774, THP-1, and NIH-3T3), promastigotes, and intracellular amastigotes without a selective response against amastigotes (selective index ≥1). Topical once-daily ClAlPc-UDL plus visible-light irradiation (20 J/cm2) twice weekly for 3 weeks was ineffective against L. (V.) braziliensis-infected BALB/c mice, whereas miltefosine 30 mg/kg/day orally for 10 days healed the lesions and scars, without parasites observed on the slides. Even though UDLs preserved ClAlPc photoactivities and were able to deliver ClAlPc to dermis, they were unable to result in healing of CL-infected mice after PDT. Experiments using different CL animal models and liposomes with increased skin permeability abilities are recommended.


Subject(s)
Indoles/administration & dosage , Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/drug therapy , Organometallic Compounds/administration & dosage , Photochemotherapy/methods , Animals , Cell Line , DNA Damage , Female , Inhibitory Concentration 50 , Liposomes , Mice , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...