Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39106130

ABSTRACT

Goal functions make virtual goal-oriented motor tasks easier to analyze and manipulate by explicitly linking movement to outcome. However, they have only been used to study constrained (e.g., planar) upper limb movements. We present a design framework for integrating goal functions with unconstrained postural and upper limb movements in a virtual reality (VR) device. VR tasks designed with the framework can mimic unconstrained natural motions and thus train a range of functional movements yet remain analytically tractable. We created three in-place VR motor tasks: a bow-and-arrow, a reach-and-strike, and a punching bag task. Each task was adjusted to subject-specific workspace limits and anthropometrics. We studied the effects of 3 days of practice and 3 reach/lean distances on task performance in 12 healthy adults. Subjects performed all tasks on day 1 with moderate proficiency and improved with practice at all reach/lean distances. Task-specific results showed that performance decreased and movement variability increased near the edge of the reaching workspace; viewing angles and the imperfect depth cues in VR likely led to biases in performance and practice could attenuate the former effect; in reach-and-strike, subjects learned movement patterns similar to those seen in a real-world striking sport. These results show that our framework can deliver tasks useful for analyzing and training motor performance and can guide future in-place motor training. Post-hoc, we demonstrated the feasibility of generalizable methods that adjust required movement speeds and task difficulty for impaired populations.


Subject(s)
Goals , Movement , Psychomotor Performance , Virtual Reality , Humans , Male , Female , Adult , Young Adult , Movement/physiology , Psychomotor Performance/physiology , Upper Extremity/physiology , Healthy Volunteers , Biomechanical Phenomena , Task Performance and Analysis , Posture/physiology , Algorithms
2.
Wearable Technol ; 5: e3, 2024.
Article in English | MEDLINE | ID: mdl-38486863

ABSTRACT

Transcutaneous spinal cord stimulation (TSCS) is gaining popularity as a noninvasive alternative to epidural stimulation. However, there is still much to learn about its effects and utility in assisting recovery of motor control. In this study, we applied TSCS to healthy subjects concurrently performing a functional training task to study its effects during a training intervention. We first carried out neurophysiological tests to characterize the H-reflex, H-reflex recovery, and posterior root muscle reflex thresholds, and then conducted balance tests, first without TSCS and then with TSCS. Balance tests included trunk perturbations in forward, backward, left, and right directions, and subjects' balance was characterized by their response to force perturbations. A balance training task involved the subjects playing a catch-and-throw game in virtual reality (VR) while receiving trunk perturbations and TSCS. Balance tests with and without TSCS were conducted after the VR training to measure subjects' post-training balance characteristics and then neurophysiological tests were carried out again. Statistical comparisons using t-tests between the balance and neurophysiological data collected before and after the VR training intervention found that the immediate effect of TSCS was to increase muscle activity during forward perturbations and to reduce balance performance in that direction. Muscle activity decreased after training and even more once TSCS was turned off. We thus observed an interaction of effects where TSCS increased muscle activity while the physical training decreased it.

3.
Kidney360 ; 2(7): 1152-1155, 2021 07 29.
Article in English | MEDLINE | ID: mdl-35368363

ABSTRACT

AKI frequently occurs in patients with COVID-19, and kidney injury severe enough to require RRT is a common complication among patients who are critically ill. During the surge of the pandemic, there was a high demand for dialysate for continuous RRT, and this increase in demand, coupled with vulnerabilities in the supply chain, necessitated alternative approaches, including internal production of dialysate. Using a standard hemodialysis machine and off-the-shelf supplies, as per Food and Drug Administration guidelines, we developed a method for on-site dialysate production that is adaptable and can be used to fill multiple bags at once. The use of a central reverse osmosis unit, dedicated hemodialysis machine, sterile bags with separate ports for fill and use, and frequent testing will ensure stability, sterility, and-therefore-safety of the produced dialysate. The dialysate made in house was tested and it showed both stability and sterility for at least 30 hours. This detailed description of our process for generating dialysate can serve as a guide for other programs experiencing similar vulnerabilities in the demand versus supply of dialysate.


Subject(s)
Acute Kidney Injury , COVID-19 , Continuous Renal Replacement Therapy , Acute Kidney Injury/therapy , Dialysis Solutions , Humans , Pandemics , United States
4.
Bone ; 108: 145-155, 2018 03.
Article in English | MEDLINE | ID: mdl-29305998

ABSTRACT

Mechanical loading is an important aspect of post-surgical fracture care. The timing of load application relative to the injury event may differentially regulate repair depending on the stage of healing. Here, we used a novel mechanobiological model of cortical defect repair that offers several advantages including its technical simplicity and spatially confined repair program, making effects of both physical and biological interventions more easily assessed. Using this model, we showed that daily loading (5N peak load, 2Hz, 60 cycles, 4 consecutive days) during hematoma consolidation and inflammation disrupted the injury site and activated cartilage formation on the periosteal surface adjacent to the defect. We also showed that daily loading during the matrix deposition phase enhanced both bone and cartilage formation at the defect site, while loading during the remodeling phase resulted in an enlarged woven bone regenerate. All loading regimens resulted in abundant cellular proliferation throughout the regenerate and fibrous tissue formation directly above the defect demonstrating that all phases of cortical defect healing are sensitive to physical stimulation. Stress was concentrated at the edges of the defect during exogenous loading, and finite element (FE)-modeled longitudinal strain (εzz) values along the anterior and posterior borders of the defect (~2200µÎµ) was an order of magnitude larger than strain values on the proximal and distal borders (~50-100µÎµ). It is concluded that loading during the early stages of repair may impede stabilization of the injury site important for early bone matrix deposition, whereas loading while matrix deposition and remodeling are ongoing may enhance stabilization through the formation of additional cartilage and bone.


Subject(s)
Cortical Bone/pathology , Cortical Bone/physiopathology , Models, Biological , Wound Healing , Animals , Biomechanical Phenomena , Bone Matrix/metabolism , Cell Proliferation , Chondrogenesis , Compressive Strength , Female , Hematoma/pathology , Inflammation/pathology , Mice, Inbred C57BL , Organ Size , Osteoclasts/metabolism , Reproducibility of Results , Stress, Mechanical , Tibia/pathology , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL