Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(36): e2118763119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037356

ABSTRACT

Turritopsis dohrnii is the only metazoan able to rejuvenate repeatedly after its medusae reproduce, hinting at biological immortality and challenging our understanding of aging. We present and compare whole-genome assemblies of T. dohrnii and the nonimmortal Turritopsis rubra using automatic and manual annotations, together with the transcriptome of life cycle reversal (LCR) process of T. dohrnii. We have identified variants and expansions of genes associated with replication, DNA repair, telomere maintenance, redox environment, stem cell population, and intercellular communication. Moreover, we have found silencing of polycomb repressive complex 2 targets and activation of pluripotency targets during LCR, which points to these transcription factors as pluripotency inducers in T. dohrnii. Accordingly, we propose these factors as key elements in the ability of T. dohrnii to undergo rejuvenation.


Subject(s)
Hydrozoa , Rejuvenation , Animals , Genomics , Hydrozoa/genetics , Hydrozoa/growth & development , Life Cycle Stages/genetics , Transcriptome
2.
Sci Rep ; 9(1): 14938, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31624306

ABSTRACT

Tardigrades, also known as water bears, are small aquatic animals that inhabit marine, fresh water or limno-terrestrial environments. While all tardigrades require surrounding water to grow and reproduce, species living in limno-terrestrial environments (e.g. Ramazzottius varieornatus) are able to undergo almost complete dehydration by entering an arrested state known as anhydrobiosis, which allows them to tolerate ionic radiation, extreme temperatures and intense pressure. Previous studies based on comparison of the genomes of R. varieornatus and Hypsibius dujardini - a less tolerant tardigrade - have pointed to potential mechanisms that may partially contribute to their remarkable ability to resist extreme physical conditions. In this work, we have further annotated the genomes of both tardigrades using a guided approach in search for novel mechanisms underlying the extremotolerance of R. varieornatus. We have found specific amplifications of several genes, including MRE11 and XPC, and numerous missense variants exclusive of R. varieornatus in CHEK1, POLK, UNG and TERT, all of them involved in important pathways for DNA repair and telomere maintenance. Taken collectively, these results point to genomic features that may contribute to the enhanced ability to resist extreme environmental conditions shown by R. varieornatus.


Subject(s)
Adaptation, Physiological/genetics , Extremophiles/physiology , Genome/physiology , Molecular Sequence Annotation , Tardigrada/physiology , Animals , Gene Amplification , Genomics , Mutation, Missense , Water
3.
Nat Ecol Evol ; 3(1): 87-95, 2019 01.
Article in English | MEDLINE | ID: mdl-30510174

ABSTRACT

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.


Subject(s)
Aging/genetics , Genome , Turtles/genetics , Animals , DNA Repair/genetics , Evolution, Molecular , HEK293 Cells , Humans , Inflammation Mediators , Male , Neoplasms/genetics , Phylogeny , Population Density
4.
J Med Genet ; 55(12): 837-846, 2018 12.
Article in English | MEDLINE | ID: mdl-30323018

ABSTRACT

BACKGROUND: Wiedemann-Rautenstrauch syndrome (WRS) is a form of segmental progeria presenting neonatally, characterised by growth retardation, sparse scalp hair, generalised lipodystrophy with characteristic local fatty tissue accumulations and unusual face. We aimed to understand its molecular cause. METHODS: We performed exome sequencing in two families, targeted sequencing in 10 other families and performed in silico modelling studies and transcript processing analyses to explore the structural and functional consequences of the identified variants. RESULTS: Biallelic POLR3A variants were identified in eight affected individuals and monoallelic variants of the same gene in four other individuals. In the latter, lack of genetic material precluded further analyses. Multiple variants were found to affect POLR3A transcript processing and were mostly located in deep intronic regions, making clinical suspicion fundamental to detection. While biallelic POLR3A variants have been previously reported in 4H syndrome and adolescent-onset progressive spastic ataxia, recurrent haplotypes specifically occurring in individuals with WRS were detected. All WRS-associated POLR3A amino acid changes were predicted to perturb substantially POLR3A structure/function. CONCLUSION: Biallelic mutations in POLR3A, which encodes for the largest subunit of the DNA-dependent RNA polymerase III, underlie WRS. No isolated functional sites in POLR3A explain the phenotype variability in POLR3A-related disorders. We suggest that specific combinations of compound heterozygous variants must be present to cause the WRS phenotype. Our findings expand the molecular mechanisms contributing to progeroid disorders.


Subject(s)
Alleles , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation/genetics , Progeria/diagnosis , Progeria/genetics , RNA Polymerase III/genetics , Adult , Amino Acid Sequence , Base Sequence , Computational Biology , Consanguinity , Female , Genotype , Haplotypes , Humans , Male , Models, Molecular , Mutation , Pedigree , Protein Conformation , RNA Polymerase III/chemistry , Reproducibility of Results , Sequence Analysis, DNA , Structure-Activity Relationship , Exome Sequencing
5.
Nat Commun ; 9(1): 3437, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143634

ABSTRACT

Keratin 76 (Krt76) is expressed in the differentiated epithelial layers of skin, oral cavity and squamous stomach. Krt76 downregulation in human oral squamous cell carcinomas (OSCC) correlates with poor prognosis. We show that genetic ablation of Krt76 in mice leads to spleen and lymph node enlargement, an increase in regulatory T cells (Tregs) and high levels of pro-inflammatory cytokines. Krt76-/- Tregs have increased suppressive ability correlated with increased CD39 and CD73 expression, while their effector T cells are less proliferative than controls. Loss of Krt76 increases carcinogen-induced tumours in tongue and squamous stomach. Carcinogenesis is further increased when Treg levels are elevated experimentally. The carcinogenesis response includes upregulation of pro-inflammatory cytokines and enhanced accumulation of Tregs in the tumour microenvironment. Tregs also accumulate in human OSCC exhibiting Krt76 loss. Our study highlights the role of epithelial cells in modulating carcinogenesis via communication with cells of the immune system.


Subject(s)
Keratins/immunology , Mouth Neoplasms/immunology , Stomach Neoplasms/immunology , 5'-Nucleotidase/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Cell Line, Tumor , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , In Situ Hybridization, Fluorescence , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , T-Lymphocytes, Regulatory/metabolism
6.
Dis Model Mech ; 9(7): 719-35, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27482812

ABSTRACT

Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid) syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations.


Subject(s)
Cellular Reprogramming , Progeria/pathology , Animals , Disease Models, Animal , Humans , Mice , Models, Biological , Progeria/therapy , Rejuvenation , Syndrome
7.
J Med Genet ; 53(11): 776-785, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27334370

ABSTRACT

BACKGROUND: Progeroid syndromes are genetic disorders that recapitulate some phenotypes of physiological ageing. Classical progerias, such as Hutchinson-Gilford progeria syndrome (HGPS), are generally caused by mutations in LMNA leading to accumulation of the toxic protein progerin and consequently, to nuclear envelope alterations. In this work, we describe a novel phenotypic feature of the progeria spectrum affecting three unrelated newborns and identify its genetic cause. METHODS AND RESULTS: Patients reported herein present an extremely homogeneous phenotype that somewhat recapitulates those of patients with HGPS and mandibuloacral dysplasia. However, pathological signs appear earlier, are more aggressive and present distinctive features including episodes of severe upper airway obstruction. Exome and Sanger sequencing allowed the identification of heterozygous de novo c.163G>A, p.E55K and c.164A>G, p.E55G mutations in LMNA as the alterations responsible for this disorder. Functional analyses demonstrated that fibroblasts from these patients suffer important dysfunctions in nuclear lamina, which generate profound nuclear envelope abnormalities but without progerin accumulation. These nuclear alterations found in patients' dermal fibroblasts were also induced by ectopic expression of the corresponding site-specific LMNA mutants in control human fibroblasts. CONCLUSIONS: Our results demonstrate the causal role of p.E55K and p.E55G lamin A mutations in a disorder which manifests novel phenotypic features of the progeria spectrum characterised by neonatal presentation and aggressive clinical evolution, despite being caused by lamin A/C missense mutations with effective prelamin A processing.

8.
J Immunol ; 197(1): 296-302, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27259858

ABSTRACT

Matrix metalloproteases (MMPs) regulate innate immunity acting over proinflammatory cytokines, chemokines, and other immune-related proteins. MMP-25 (membrane-type 6-MMP) is a membrane-bound enzyme predominantly expressed in leukocytes whose biological function has remained largely unknown. We have generated Mmp25-deficient mice to elucidate the in vivo function of this protease. These mutant mice are viable and fertile and do not show any spontaneous phenotype. However, Mmp25-null mice exhibit a defective innate immune response characterized by low sensitivity to bacterial LPS, hypergammaglobulinemia, and reduced secretion of proinflammatory molecules. Moreover, these immune defects can be tracked to a defective NF-κB activation observed in Mmp25-deficient leukocytes. Globally, our findings provide new mechanistic insights into innate immunity through the activity of MMP-25, suggesting that this proteinase could be a potential therapeutic target for immune-related diseases.


Subject(s)
Hypergammaglobulinemia/immunology , Leukocytes/immunology , Matrix Metalloproteinases, Membrane-Associated/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Immunity, Innate/genetics , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Matrix Metalloproteinases, Membrane-Associated/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...