Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
BMC Med Educ ; 24(1): 21, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172850

ABSTRACT

BACKGROUND: The COVID-19 pandemic brought about profound social changes that affected students worldwide. These changes had both psychological and economic consequences, and also led to the adoption of new teaching methods. It can also have an impact on work culture, which is the collective set of values, norms, and practices within a specific profession, shaping how individuals in that field behave, communicate, and identify with their work. The aim of the study was to examine medical students' perception of professional culture during the COVID-19 crisis when they voluntarily participated in the healthcare network established, outside of university placements, for the management of COVID patients. METHODS: A questionnaire study based on the vignette methodology was conducted among third-year medical students. Drawing from three scenarios in which students were variably engaged in crisis management, it included questions about their perceptions of the medical profession, their motivation, and their sense of belonging to the profession. RESULTS: 352 students responded to the survey. The pandemic had both a positive and a negative impact on students' perceptions of the medical profession. Cluster analysis using a k-means algorithm and principal component analysis revealed three clusters of students with different perceptions of the medical profession. The first cluster, which represented the majority of students, corresponded to a relatively positive perception of the profession that was reinforced during the pandemic. In the second cluster, students' perceptions were reinforced still further, and particular importance was attached to field experience. Students in the third cluster had the most negative perceptions, having been shaken the most by the pandemic, and they attached little importance to field experience. CONCLUSIONS: The analysis highlighted the importance of students being able to adapt and draw on a range of resources during the COVID-19 pandemic. This underscores the need for work cultures that support adaptability and coping. Further research is needed to understand its long-term effects on students' perceptions of the medical profession and to identify interventions that could support students in the aftermath of this difficult period.


Subject(s)
COVID-19 , Students, Medical , Humans , Pandemics , COVID-19/epidemiology , Algorithms , Cluster Analysis
2.
J Clin Lipidol ; 17(5): 643-658, 2023.
Article in English | MEDLINE | ID: mdl-37550151

ABSTRACT

BACKGROUND: The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE: This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS: HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS: Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION: Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.


Subject(s)
Hyperlipoproteinemia Type II , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Lipoproteins, HDL/genetics , Proteomics , Hyperlipoproteinemia Type II/genetics , Structure-Activity Relationship , Receptors, LDL/genetics , Mutation
3.
Arterioscler Thromb Vasc Biol ; 43(7): e270-e278, 2023 07.
Article in English | MEDLINE | ID: mdl-37128917

ABSTRACT

BACKGROUND: Autosomal dominant hypercholesterolemia (ADH) is due to deleterious variants in LDLR, APOB, or PCSK9 genes. Double heterozygote for these genes induces a more severe phenotype. More recently, a new causative variant of heterozygous ADH was identified in APOE. Here we study the phenotype of 21 adult patients, double heterozygotes for rare LDLR and rare APOE variants (LDLR+APOE) in a national wide French cohort. METHODS: LDLR, APOB, PCSK9, and APOE genes were sequenced in 5743 probands addressed for ADH genotyping. The lipid profile and occurrence of premature atherosclerotic cardiovascular diseases were compared between the LDLR+APOE carriers (n=21) and the carriers of the same LDLR causative variants alone (n=22). RESULTS: The prevalence of LDLR+APOE carriers in this French ADH cohort is 0.4%. Overall, LDL (low-density lipoprotein)-cholesterol concentrations were 23% higher in LDLR+APOE patients than in LDLR patients (9.14±2.51 versus 7.43±1.59 mmol/L, P=0.0221). When only deleterious or probably deleterious variants were considered, the LDL-cholesterol concentrations were 46% higher in LDLR+APOE carriers than in LDLR carriers (10.83±3.45 versus 7.43±1.59 mmol/L, P=0.0270). Two patients exhibited a homozygous familial hypercholesterolemia phenotype (LDL-cholesterol >13 mmol/L). Premature atherosclerotic cardiovascular disease was more common in LDLR+APOE patients than in LDLR carriers (70% versus 30%, P=0.026). CONCLUSIONS: Although an incomplete penetrance should be taken into account for APOE variant classification, these results suggest an additive effect of deleterious APOE variants on ADH phenotype highlighting the relevance of APOE sequencing.


Subject(s)
Atherosclerosis , Hyperlipoproteinemia Type II , Humans , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Cholesterol, LDL , Phenotype , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Apolipoproteins B/genetics , Apolipoproteins E/genetics , Mutation , Heterozygote
5.
Arterioscler Thromb Vasc Biol ; 43(2): e94-e103, 2023 02.
Article in English | MEDLINE | ID: mdl-36579650

ABSTRACT

BACKGROUND: Animal studies have demonstrated that fetal exposure to high maternal cholesterol levels during pregnancy predisposes to aortic atheroma in the offspring. In humans, little is known about the consequences of this exposure on the development of atherosclerotic cardiovascular disease later in life. We wanted to assess whether maternal/paternal inheritance of familial hypercholesterolemia (FH) gene mutation could be associated with subclinical coronary atherosclerosis. METHODS: We retrospectively included 1350 patients, followed in the French registry of FH, with a documented genetic diagnosis. We selected 556 age- and sex-matched pair of patients based on the sex of the parents who transmitted the FH gene mutation, free of coronary cardiovascular event, and with a subclinical coronary atherosclerosis evaluation assessed using coronary artery calcium (CAC) score. We performed univariate and multivariate analysis to assess the individual effect of parental inheritance of the FH gene mutation on the CAC score. RESULTS: In the whole population, patients with maternal inheritance of FH gene mutation (n=639) less frequently had a family history of premature cardiovascular events (27.7% versus 45%, P<0.0001) and were 2 years older (46.9±16.8 versus 44.7±15.9 years old, P=0.02) than those with paternal inheritance (n=711). There was no difference in the prevalence of cardiovascular events between the two groups. In the matched subgroup, maternal inheritance was significantly associated with an increase in CAC score value by 86% (95% CI, 23%-170%; P=0.003), a 1.81-fold risk of having a CAC score ≥100 Agatston units (95% CI, 1.06-3.11; P=0.03), and a 2.72-fold risk of having a CAC score ≥400 Agatston units (95% CI, 1.39-5.51; P=0.004) when compared with paternal inheritance in multivariate analysis. CONCLUSIONS: Maternal inheritance of FH gene mutation was associated with more severe subclinical coronary atherosclerosis assessed by CAC score and may be considered as a potential cardiovascular risk factor.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Hyperlipoproteinemia Type II , Humans , Adult , Middle Aged , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Calcium , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Retrospective Studies , Maternal Inheritance , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Atherosclerosis/complications , Mutation , Risk Factors
6.
Eur J Prev Cardiol ; 29(16): 2125-2131, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36047048

ABSTRACT

AIMS: Patients with familial hypercholesterolaemia (FH) are at increased risk of cardiovascular disease (CVD) due to extremely high circulating LDL cholesterol (LDL-C) concentrations. Our objective was to study the effect of the type of LDL receptor (LDLR) mutation on the incidence of major adverse cardiovascular events (MACEs). METHODS AND RESULTS: This was a multinational prospective cohort study, which included patients with heterozygous FH aged 18-65 years, without a prior history of CVD, and carrying a pathogenic or likely pathogenic variant in the LDLR gene. A total of 2131 patients (20 535person-years of follow-up) were included in the study, including 1234 subjects carrying a defective mutation in the LDLR and 897 subjects carrying a null mutation. During the follow-up, a first MACE occurred in 79 cases (6%) in the defective group and in 111 cases (12%) in the null group. The mean baseline LDL-C concentration was 17% higher in the null group than in the defective group (7.90 vs. 6.73 mmoL/L, P < 0.0001). In a Cox regression model corrected for traditional cardiovascular risk factors, the presence of a null mutation was associated with a hazard ratio of 2.09 (1.44-3.05), P = 0.0001. CONCLUSION: Carriers of a null mutation have an independent ∼2-fold increased risk of incident MACE compared with patients carrying a defective mutation. This study highlights the importance of genetic screening in FH in order to improve patient care.


Subject(s)
Cardiovascular Diseases , Hyperlipoproteinemia Type II , Humans , Cholesterol, LDL , Prospective Studies , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Receptors, LDL/genetics , Mutation , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics
7.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628605

ABSTRACT

Primary hypercholesterolemia is characterized by elevated LDL-cholesterol (LDL-C) levels isolated in autosomal dominant hypercholesterolemia (ADH) or associated with elevated triglyceride levels in familial combined hyperlipidemia (FCHL). Rare APOE variants are known in ADH and FCHL. We explored the APOE molecular spectrum in a French ADH/FCHL cohort of 5743 unrelated probands. The sequencing of LDLR, PCSK9, APOB, and APOE revealed 76 carriers of a rare APOE variant, with no mutation in LDLR, PCSK9, or APOB. Among the 31 APOE variants identified here, 15 are described in ADH, 10 in FCHL, and 6 in both probands. Five were previously reported with dyslipidemia and 26 are novel, including 12 missense, 5 synonymous, 2 intronic, and 7 variants in regulatory regions. Sixteen variants were predicted as pathogenic or likely pathogenic, and their carriers had significantly lower polygenic risk scores (wPRS) than carriers of predicted benign variants. We observed no correlation between LDL-C levels and wPRS, suggesting a major effect of APOE variants. Carriers of p.Leu167del were associated with a severe phenotype. The analysis of 11 probands suggests that carriers of an APOE variant respond better to statins than carriers of a LDLR mutation. Altogether, we show that the APOE variants account for a significant contribution to ADH and FCHL.


Subject(s)
Apolipoproteins E , Hyperlipoproteinemia Type II , Proprotein Convertase 9 , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Cholesterol, LDL/genetics , Cholesterol, LDL/metabolism , Humans , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism
8.
Genet Med ; 24(2): 293-306, 2022 02.
Article in English | MEDLINE | ID: mdl-34906454

ABSTRACT

PURPOSE: In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published consensus standardized guidelines for sequence-level variant classification in Mendelian disorders. To increase accuracy and consistency, the Clinical Genome Resource Familial Hypercholesterolemia (FH) Variant Curation Expert Panel was tasked with optimizing the existing ACMG/AMP framework for disease-specific classification in FH. In this study, we provide consensus recommendations for the most common FH-associated gene, LDLR, where >2300 unique FH-associated variants have been identified. METHODS: The multidisciplinary FH Variant Curation Expert Panel met in person and through frequent emails and conference calls to develop LDLR-specific modifications of ACMG/AMP guidelines. Through iteration, pilot testing, debate, and commentary, consensus among experts was reached. RESULTS: The consensus LDLR variant modifications to existing ACMG/AMP guidelines include (1) alteration of population frequency thresholds, (2) delineation of loss-of-function variant types, (3) functional study criteria specifications, (4) cosegregation criteria specifications, and (5) specific use and thresholds for in silico prediction tools, among others. CONCLUSION: Establishment of these guidelines as the new standard in the clinical laboratory setting will result in a more evidence-based, harmonized method for LDLR variant classification worldwide, thereby improving the care of patients with FH.


Subject(s)
Genome, Human , Hyperlipoproteinemia Type II , Genetic Testing/methods , Genetic Variation/genetics , Genome, Human/genetics , Genomics/methods , Humans , Hyperlipoproteinemia Type II/genetics
9.
EBioMedicine ; 74: 103735, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34864619

ABSTRACT

BACKGROUND: Familial Hypercholesterolemia (FH) is an underdiagnosed condition with an increased cardiovascular risk. It is unknown whether lipid accumulation plays a role in structural myocardial changes. Cardiovascular Magnetic Resonance (CMR) is the reference technique for the morpho-functional evaluation of heart chambers through cine sequences and for myocardial tissue characterization through late gadolinium enhancement (LGE) and T1 mapping images. We aimed to assess the prevalence of myocardial fibrosis in FH patients. METHODS: Seventy-two asymptomatic subjects with genetically confirmed FH (mean age 49·24, range 40 to 60 years) were prospectively recruited along with 31 controls without dyslipidaemia matched for age, sex, BMI, and other cardiovascular risk factors. All underwent CMR including cine, LGE, pre- and post-contrast T1 mapping. Extracellular volume (ECV) and enhancement rate of the myocardium (ERM = difference between pre- and post-contrast myocardial T1, normalized by pre-contrast myocardial T1) were calculated. FINDINGS: Five FH patients and none of the controls had intramyocardial LGE (p= 0·188). While no changes in Native T1 and ECV were found, post-contrast T1 was significantly lower (430·6 ± 55ms vs. 476·1 ± 43ms, p<0·001) and ERM was higher (57·44± 5·99 % vs 53·04±4·88, p=0·005) in HeFH patients compared to controls. Moreover, low post-contrast T1 was independently associated with the presence of xanthoma (HR 5·221 [1·04-26·28], p= 0·045). A composite score combining the presence of LGE, high native T1 and high ERM (defined as ≥ mean ± 1·5 SD) was found in 20·8% of the HeFH patients vs. 0% in controls (p<0·000, after adjustment for main confounders). INTERPRETATION: CMR revealed early changes in myocardial tissue characteristics in HeFH patients, that should foster further work to better understand and prevent the underlying pathophysiological processes.


Subject(s)
Hyperlipoproteinemia Type II/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Adult , Case-Control Studies , Female , Fibrosis , Humans , Male , Middle Aged , Predictive Value of Tests , Prevalence , Prospective Studies
10.
Arch Cardiovasc Dis ; 114(12): 828-847, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34840125

ABSTRACT

Lipoprotein(a) is an apolipoprotein B100-containing low-density lipoprotein-like particle that is rich in cholesterol, and is associated with a second major protein, apolipoprotein(a). Apolipoprotein(a) possesses structural similarity to plasminogen but lacks fibrinolytic activity. As a consequence of its composite structure, lipoprotein(a) may: (1) elicit a prothrombotic/antifibrinolytic action favouring clot stability; and (2) enhance atherosclerosis progression via its propensity for retention in the arterial intima, with deposition of its cholesterol load at sites of plaque formation. Equally, lipoprotein(a) may induce inflammation and calcification in the aortic leaflet valve interstitium, leading to calcific aortic valve stenosis. Experimental, epidemiological and genetic evidence support the contention that elevated concentrations of lipoprotein(a) are causally related to atherothrombotic risk and equally to calcific aortic valve stenosis. The plasma concentration of lipoprotein(a) is principally determined by genetic factors, is not influenced by dietary habits, remains essentially constant over the lifetime of a given individual and is the most powerful variable for prediction of lipoprotein(a)-associated cardiovascular risk. However, major interindividual variations (up to 1000-fold) are characteristic of lipoprotein(a) concentrations. In this context, lipoprotein(a) assays, although currently insufficiently standardized, are of considerable interest, not only in stratifying cardiovascular risk, but equally in the clinical follow-up of patients treated with novel lipid-lowering therapies targeted at lipoprotein(a) (e.g. antiapolipoprotein(a) antisense oligonucleotides and small interfering ribonucleic acids) that markedly reduce circulating lipoprotein(a) concentrations. We recommend that lipoprotein(a) be measured once in subjects at high cardiovascular risk with premature coronary heart disease, in familial hypercholesterolaemia, in those with a family history of coronary heart disease and in those with recurrent coronary heart disease despite lipid-lowering treatment. Because of its clinical relevance, the cost of lipoprotein(a) testing should be covered by social security and health authorities.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Consensus , Humans , Lipoprotein(a) , Risk Factors
12.
Orphanet J Rare Dis ; 16(1): 381, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34496902

ABSTRACT

BACKGROUND: Homozygous familial hypercholesterolemia (HoFH) is a rare life-threatening condition that represents a therapeutic challenge. The vast majority of HoFH patients fail to achieve LDL-C targets when treated with the standard protocol, which associates maximally tolerated dose of lipid-lowering medications with lipoprotein apheresis (LA). Lomitapide is an emerging therapy in HoFH, but its place in the treatment algorithm is disputed because a comparison of its long-term efficacy versus LA in reducing LDL-C burden is not available. We assessed changes in long-term LDL-C burden and goals achievement in two independent HoFH patients' cohorts, one treated with lomitapide in Italy (n = 30) and the other with LA in France (n = 29). RESULTS: The two cohorts differed significantly for genotype (p = 0.004), baseline lipid profile (p < 0.001), age of treatment initiation (p < 0.001), occurrence of cardiovascular disease (p = 0.003) as well as follow-up duration (p < 0.001). The adjunct of lomitapide to conventional lipid-lowering therapies determined an additional 58.0% reduction of last visit LDL-C levels, compared to 37.1% when LA was added (padj = 0.004). Yearly on-treatment LDL-C < 70 mg/dl and < 55 mg/dl goals were only achieved in 45.5% and 13.5% of HoFH patients treated with lomitapide. The long-term exposure to LDL-C burden was found to be higher in LA than in Lomitapide cohort (13,236.1 ± 5492.1 vs. 11,656.6 ± 4730.9 mg/dL-year respectively, padj = 0.002). A trend towards fewer total cardiovascular events was observed in the Lomitapide than in the LA cohort. CONCLUSIONS: In comparison with LA, lomitapide appears to provide a better control of LDL-C in HoFH. Further studies are needed to confirm this data and establish whether this translates into a reduction of cardiovascular risk.


Subject(s)
Anticholesteremic Agents , Blood Component Removal , Hyperlipoproteinemia Type II , Anticholesteremic Agents/therapeutic use , Benzimidazoles , Homozygote , Humans , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/genetics , Lipoproteins , Retrospective Studies
13.
Adv Physiol Educ ; 45(2): 390-398, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33961515

ABSTRACT

The COVID-19 crisis necessitated abrupt transition to remote learning in medical schools. We aimed to assess the impact of COVID-19 on French undergraduate students and teachers, to identify practice changes, and to evaluate successes and areas for improvement of this remote learning experience. Data from 2 online questionnaires were analyzed with 509 participants among students and 189 among teachers from Sorbonne University. Responses to multiple choice, Likert response scale, and open-ended questions were evaluated. COVID-19 had negative impact on teaching continuity. Sixty-seven percent of students were in a dropout situation, and many suffered from psychological stress, leading to set up of a psychological support unit. Although most teachers (81%) and students (72%) had limited knowledge of digital resources, distance learning was quickly implemented, with a predominant use of Zoom. The analysis of several parameters revealed that students were significantly more satisfied than teachers by remote learning. Nevertheless, both students and teachers agreed to replace classical lectures by digital media and to promote in-person teaching in small interactive groups. This paper shares tips for faculty rapidly establishing remote learning. This comparative study of the students' and teachers' points of view underlines that new medical curricula should include more digital contents. We make recommendations regarding general university organization, equipment, and curricular development for long-term implementation of digital resources with reinforced relationships between faculty and students.


Subject(s)
COVID-19 , Education, Distance , Education, Medical, Undergraduate , Students, Medical , France , Humans , Internet
14.
Atherosclerosis ; 324: 1-8, 2021 05.
Article in English | MEDLINE | ID: mdl-33798922

ABSTRACT

BACKGROUND AND AIMS: While low concentrations of high-density lipoprotein-cholesterol (HDL-C) represent a well-established cardiovascular risk factor, extremely high HDL-C is paradoxically associated with elevated cardiovascular risk, resulting in the U-shape relationship with cardiovascular disease. Free cholesterol transfer to HDL upon lipolysis of triglyceride-rich lipoproteins (TGRL) was recently reported to underlie this relationship, linking HDL-C to triglyceride metabolism and atherosclerosis. In addition to free cholesterol, other surface components of TGRL, primarily phospholipids, are transferred to HDL during lipolysis. It remains indeterminate as to whether such transfer is linked to HDL-C and cardiovascular disease. METHODS AND RESULTS: When TGRL was labelled with fluorescent phospholipid 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), time- and dose-dependent transfer of DiI to HDL was observed upon incubations with lipoprotein lipase (LPL). The capacity of HDL to acquire DiI was decreased by -36% (p<0.001) in low HDL-C patients with acute myocardial infarction (n = 22) and by -95% (p<0.001) in low HDL-C subjects with Tangier disease (n = 7), unchanged in low HDL-C patients with Type 2 diabetes (n = 17) and in subjects with high HDL-C (n = 20), and elevated in subjects with extremely high HDL-C (+11%, p<0.05) relative to healthy normolipidemic controls. Across all the populations combined, HDL capacity to acquire DiI was directly correlated with HDL-C (r = 0.58, p<0.001). No relationship of HDL capacity to acquire DiI with both overall and cardiovascular mortality obtained from epidemiological studies for the mean HDL-C levels observed in the studied populations was obtained. CONCLUSIONS: These data indicate that the capacity of HDL to acquire phospholipid from TGRL upon LPL-mediated lipolysis is proportional to HDL-C and does not reflect cardiovascular risk in subjects widely differing in HDL-C levels.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Cardiovascular Diseases/diagnosis , Cholesterol , Heart Disease Risk Factors , Humans , Lipolysis , Lipoprotein Lipase/metabolism , Lipoproteins, HDL/metabolism , Phospholipids , Risk Factors , Triglycerides
15.
PLoS Genet ; 17(1): e1009325, 2021 01.
Article in English | MEDLINE | ID: mdl-33513138

ABSTRACT

In response to physical exercise and diet, skeletal muscle adapts to energetic demands through large transcriptional changes. This remodelling is associated with changes in skeletal muscle DNA methylation which may participate in the metabolic adaptation to extracellular stimuli. Yet, the mechanisms by which muscle-borne DNA methylation machinery responds to diet and exercise and impacts muscle function are unknown. Here, we investigated the function of de novo DNA methylation in fully differentiated skeletal muscle. We generated muscle-specific DNA methyltransferase 3A (DNMT3A) knockout mice (mD3AKO) and investigated the impact of DNMT3A ablation on skeletal muscle DNA methylation, exercise capacity and energy metabolism. Loss of DNMT3A reduced DNA methylation in skeletal muscle over multiple genomic contexts and altered the transcription of genes known to be influenced by DNA methylation, but did not affect exercise capacity and whole-body energy metabolism compared to wild type mice. Loss of DNMT3A did not alter skeletal muscle mitochondrial function or the transcriptional response to exercise however did influence the expression of genes involved in muscle development. These data suggest that DNMT3A does not have a large role in the function of mature skeletal muscle although a role in muscle development and differentiation is likely.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Energy Metabolism/genetics , Muscle Development/genetics , Animals , Cell Differentiation/genetics , DNA Methyltransferase 3A , Exercise Tolerance/genetics , Humans , Mice , Mice, Knockout , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Physical Conditioning, Animal
16.
Arterioscler Thromb Vasc Biol ; 41(1): e63-e71, 2021 01.
Article in English | MEDLINE | ID: mdl-33207932

ABSTRACT

OBJECTIVE: Primary hypobetalipoproteinemia is characterized by LDL-C (low-density lipoprotein cholesterol) concentrations below the fifth percentile. Primary hypobetalipoproteinemia mostly results from heterozygous mutations in the APOB (apolipoprotein B) and PCSK9 genes, and a polygenic origin is hypothesized in the remaining cases. Hypobetalipoproteinemia patients present an increased risk of nonalcoholic fatty liver disease and steatohepatitis. Here, we compared hepatic alterations between monogenic, polygenic, and primary hypobetalipoproteinemia of unknown cause. Approach and Results: Targeted next-generation sequencing was performed in a cohort of 111 patients with hypobetalipoproteinemia to assess monogenic and polygenic origins using an LDL-C-dedicated polygenic risk score. Forty patients (36%) had monogenic hypobetalipoproteinemia, 38 (34%) had polygenic hypobetalipoproteinemia, and 33 subjects (30%) had hypobetalipoproteinemia from an unknown cause. Patients with monogenic hypobetalipoproteinemia had lower LDL-C and apolipoprotein B plasma levels compared with those with polygenic hypobetalipoproteinemia. Liver function was assessed by hepatic ultrasonography and liver enzymes levels. Fifty-nine percent of patients with primary hypobetalipoproteinemia presented with liver steatosis, whereas 21% had increased alanine aminotransferase suggestive of liver injury. Monogenic hypobetalipoproteinemia was also associated with an increased prevalence of liver steatosis (81% versus 29%, P<0.001) and liver injury (47% versus 0%) compared with polygenic hypobetalipoproteinemia. CONCLUSIONS: This study highlights the importance of genetic diagnosis in the clinical care of primary hypobetalipoproteinemia patients. It shows for the first time that a polygenic origin of hypobetalipoproteinemia is associated with a lower risk of liver steatosis and liver injury versus monogenic hypobetalipoproteinemia. Thus, polygenic risk score is a useful tool to establish a more personalized follow-up of primary hypobetalipoproteinemia patients.


Subject(s)
Apolipoprotein B-100/genetics , Cholesterol, LDL/blood , Hypobetalipoproteinemias/genetics , Multifactorial Inheritance , Mutation , Non-alcoholic Fatty Liver Disease/etiology , Proprotein Convertase 9/genetics , Adult , Biomarkers/blood , Down-Regulation , Female , Genetic Predisposition to Disease , Humans , Hypobetalipoproteinemias/blood , Hypobetalipoproteinemias/complications , Hypobetalipoproteinemias/diagnosis , Male , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Phenotype , Retrospective Studies , Risk Assessment , Risk Factors , Young Adult
17.
J Lipid Res ; 61(12): 1776-1783, 2020 12.
Article in English | MEDLINE | ID: mdl-33037132

ABSTRACT

Lipopolysaccharide (LPS) is a key player for innate immunity activation. It is therefore a prime target for sepsis treatment, as antibiotics are not sufficient to improve outcome during septic shock. An extracorporeal removal method by polymyxin (PMX) B direct hemoperfusion (PMX-DHP) is used in Japan, but recent trials failed to show a significant lowering of circulating LPS levels after PMX-DHP therapy. PMX-DHP has a direct effect on LPS molecules. However, LPS is not present in a free form in the circulation, as it is mainly carried by lipoproteins, including LDLs. Lipoproteins are critical for physiological LPS clearance, as LPSs are carried by LDLs to the liver for elimination. We hypothesized that LDL apheresis could be an alternate method for LPS removal. First, we demonstrated in vitro that LDL apheresis microbeads are almost as efficient as PMX beads to reduce LPS concentration in LPS-spiked human plasma, whereas it is not active in PBS. We found that PMX was also adsorbing lipoproteins, although less specifically. Then, we found that endogenous LPS of patients treated by LDL apheresis for familial hypercholesterolemia is also removed during their LDL apheresis sessions, with both electrostatic-based devices and filtration devices. Finally, LPS circulating in the plasma of septic shock and severe sepsis patients with gram-negative bacteremia was also removed in vitro by LDL adsorption. Overall, these results underline the importance of lipoproteins for LPS clearance, making them a prime target to study and treat endotoxemia-related conditions.


Subject(s)
Hemoperfusion , Lipopolysaccharides/blood , Lipopolysaccharides/isolation & purification , Sepsis/blood , Sepsis/therapy , Adult , Female , Healthy Volunteers , Humans , Male
18.
Atherosclerosis ; 306: 41-49, 2020 08.
Article in English | MEDLINE | ID: mdl-32688103

ABSTRACT

BACKGROUND AND AIMS: Patients with heterozygous familial hypercholesterolemia (HeFH) present elevated cardiovascular (CV) risk. Current CV risk stratification algorithms developed for the general population are not adapted for heFH patients. It is therefore of singular importance to develop and validate CV prediction tools, which are dedicated to the HeFH population. METHODS: Our first objective was to validate the Spanish SAFEHEART-risk equation (RE) in the French HeFH cohort (REFERCHOL), and the second to compare SAFEHEART-RE with the low-density-lipoprotein-cholesterol (LDL-C)-year-score for the prediction of CV events in the HeFH French population. RESULTS: We included HeFH (n = 1473) patients with a genetic or clinical diagnosis (DLCN score ≥8). Among them, 512 patients with a 5-year follow-up were included to validate the 5 year-CV-RE. A total of 152 events (10.3%) occurred in the entire population of 1473 patients during a mean follow-up of 3.9 years. Over the five-year follow-up, non-fatal CV events occurred in 103 patients (20.2%). Almost all the parameters used in the SAFEHEART-RE were confirmed as strong predictors of CV events in the REFERCHOL cohort. The C-statistic revealed a satisfactory performance of both the SAFEHEART-RE and LDL-C-year-scores in predicting CV events for all the patients (primary and secondary prevention) (C-index 0.77 and 0.70, respectively) as well as for those in primary prevention at inclusion (C-index 0.78 and 0.77, respectively). CONCLUSIONS: This analysis represents the first external validation of the SAFEHEART-RE and demonstrated that both SAFEHEART-RE and the LDL-C-year-score are good predictors of CV events in primary prevention HeFH patients.


Subject(s)
Cardiovascular Diseases , Hyperlipoproteinemia Type II , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cholesterol , Cholesterol, LDL , Cohort Studies , Humans , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics , Risk Assessment
19.
Pract Lab Med ; 18: e00150, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31909147

ABSTRACT

A qualitative, semi-automatized method for apolipoprotein E (apoE) phenotyping by isoelectric focusing method has been evaluated on 40 serum samples from patients previously genotyped for apoE, especially as regards concordance with genotyping, but also repeatability and reproducibility of the method, and sample storage. Total concordance with genotyping and good precision criteria, together with its practicability and requirement of a little sample volume, lead to conclude to the usefulness of this method to help clinicians in the diagnosis of dyslipidemic and neurodegenerative diseases.

20.
Eur J Prev Cardiol ; 27(15): 1606-1616, 2020 10.
Article in English | MEDLINE | ID: mdl-31840535

ABSTRACT

BACKGROUND: Low concentrations of high-density lipoprotein cholesterol (HDL-C) represent a well-established cardiovascular risk factor. Paradoxically, extremely high HDL-C levels are equally associated with elevated cardiovascular risk, resulting in the U-shape relationship of HDL-C with cardiovascular disease. Mechanisms underlying this association are presently unknown. We hypothesised that the capacity of high-density lipoprotein (HDL) to acquire free cholesterol upon triglyceride-rich lipoprotein (TGRL) lipolysis by lipoprotein lipase underlies the non-linear relationship between HDL-C and cardiovascular risk. METHODS: To assess our hypothesis, we developed a novel assay to evaluate the capacity of HDL to acquire free cholesterol (as fluorescent TopFluor® cholesterol) from TGRL upon in vitro lipolysis by lipoprotein lipase. RESULTS: When the assay was applied to several populations markedly differing in plasma HDL-C levels, transfer of free cholesterol was significantly decreased in low HDL-C patients with acute myocardial infarction (-45%) and type 2 diabetes (-25%), and in subjects with extremely high HDL-C of >2.59 mmol/L (>100 mg/dL) (-20%) versus healthy normolipidaemic controls. When these data were combined and plotted against HDL-C concentrations, an inverse U-shape relationship was observed. Consistent with these findings, animal studies revealed that the capacity of HDL to acquire cholesterol upon lipolysis was reduced in low HDL-C apolipoprotein A-I knock-out mice and was negatively correlated with aortic accumulation of [3H]-cholesterol after oral gavage, attesting this functional characteristic as a negative metric of postprandial atherosclerosis. CONCLUSIONS: Free cholesterol transfer to HDL upon TGRL lipolysis may underlie the U-shape relationship between HDL-C and cardiovascular disease, linking HDL-C to triglyceride metabolism and atherosclerosis.


Subject(s)
Aorta, Thoracic/metabolism , Cardiovascular Diseases/metabolism , Cholesterol Ester Transfer Proteins/metabolism , Lipolysis/physiology , Lipoproteins, HDL/metabolism , Triglycerides/metabolism , Animals , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Lipoprotein Lipase/metabolism , Male , Mice , Mice, Transgenic , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL
...