Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Psychoneuroendocrinology ; 163: 106988, 2024 May.
Article in English | MEDLINE | ID: mdl-38342055

ABSTRACT

Perinatal testosterone, or its metabolite estradiol, organize the brain toward a male phenotype. Male rodents with insufficient testosterone during this period fail to display sexual behavior and partner preference for receptive females in adulthood. However, cohabitation with non-reproductive conspecifics under the influence of a D2 agonist facilitates the expression of conditioned partner preference via Pavlovian learning in gonadally intact male rats. In the present experiment, three groups of neonatal PD1 males (N = 12/group) were either gonadectomized (GDX), sham-GDX, or left intact and evaluated for social preferences and sexual behaviors as adults. We then examined whether the effects of GDX could be reversed by conditioning the males via cohabitation with receptive females under the effects of the D2 agonist quinpirole (QNP) or saline, along with the size of some brain regions, such as the sexually dimorphic nucleus of the preoptic area (SDN-POA), suprachiasmatic nucleus (SCN), posterior dorsal medial amygdala (MeApd) and ventromedial hypothalamus (VMH). Results indicated that neonatal GDX resulted in the elimination of male-typical sexual behavior, an increase in same-sex social preference, and a reduction of the area of the SDN-POA. However, GDX-QNP males that underwent exposure to receptive females in adulthood increased their social preference for females and recovered the size in the SDN-POA. Although neonatal GDX impairs sexual behavior and disrupts partner preference and brain dimorphism in adult male rats, Pavlovian conditioning under enhanced D2 agonism ameliorates the effects on social preference and restores brain dimorphism in the SDN-POA without testosterone.


Subject(s)
Preoptic Area , Sex Characteristics , Pregnancy , Rats , Animals , Male , Female , Preoptic Area/metabolism , Brain , Quinpirole/pharmacology , Castration , Testosterone/pharmacology , Testosterone/metabolism
2.
Neurosci Lett ; 687: 241-247, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30287305

ABSTRACT

The cerebellum is a structure of the central nervous system which has been previously studied with different techniques and animal models and even humans, so it is associated with multiple functions such as cognition, memory, emotional processing, balance, control of movement, among others. Its relationship with sensory systems has already been explored, however, the role it plays in olfactory processing in the cerebellum is unclear. Several hypotheses have been proposed from work done in humans and animal models with neuroimaging and immunohistochemical techniques. Everything seems to indicate that the cerebellar function is of vital importance for the olfactory perception, being able to be controlling not only the olfactory aspect, but also the olfactory processing. In this study we analyzed the multiunit activity in the granular layer of the cerebellar vermis during olfactory stimulation: a session being sexually naive and during four sessions of sexual behavior learning. The amplitude was compared between male naive and sexual experts, as well as between olfactory stimuli. The amplitude of the sexually experienced rats showed the highest values compared to naive ones. Odor of receptive female causes the greatest amplitudes, however, in the control group the amplitude increased when they were sexually experts. The motor, sensory and associative learning generated by the acquisition of sexual experience modifies the activation pattern in the cerebellum by presenting neutral odors or associated with a reward.


Subject(s)
Cerebellar Cortex/physiology , Learning/physiology , Olfactory Perception/physiology , Sexual Behavior, Animal/physiology , Sexual Behavior/physiology , Animals , Cues , Male , Memory/physiology , Olfactory Pathways/physiology , Rats, Wistar , Smell/physiology
3.
Neurobiol Learn Mem ; 146: 31-36, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29104177

ABSTRACT

The cerebellum is a complex structure mainly recognized for its participation in motor activity and balance, and less understood for its role in olfactory processing. Herein, we assessed Fos immunoreactivity (Fos-IR) in the cerebellar vermis following exposure to different odors during sexual training in male rats. Males were allowed to copulate for either one, three or five sessions. One day after the corresponding session they were exposed during 60 min to woodshaving that was either: clean (Control), sprayed with almond scent (Alm) or from cages of sexually receptive females (RF). The vermis of the cerebellum was removed, cut in sagittal sections and analyzed for Fos-IR to infer activation. Our results showed that the cerebellum responded with more Fos-IR in the Alm and RF groups as compared to Control. More copulatory sessions resulted in more odor-induced Fos-IR, especially in the RF group. Accordingly, we discuss possible mechanisms on how the cerebellum mediates processing of both unconditioned and conditioned odors, and how sexual experience accelerates such process.


Subject(s)
Cerebellar Vermis/physiology , Learning/physiology , Olfactory Perception/physiology , Proto-Oncogene Proteins c-fos/metabolism , Sexual Behavior, Animal/physiology , Animals , Cerebellar Vermis/metabolism , Female , Immunohistochemistry , Male , Ovariectomy , Rats , Rats, Wistar
4.
Physiol Behav ; 156: 191-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26812590

ABSTRACT

The androgen receptor (AR) is a widely distributed molecule indicating the spread actions of its ligand steroid, and plays an important role underlying male sexual behavior. Nevertheless, the influence of steroid hormones and their receptors on cerebellar neurons, as foundation of sexual behavior, is largely unknown. We sought to determine the influence of peripheral hormones on the AR expression in Purkinje neurons across cerebellar lobules in the vermis of male rats. First, we found a basal AR expression in Purkinje neurons that was higher in the superficial region than the deep region only in cerebellar lobules 2, 4, 5, 7, 8 and 9. Moreover, only the cerebellar lobule 10 showed a significant difference between the coordinates 0.1, 0.3 and 0.9. Second, males with four sessions of sexual training showed a decreased AR density in cerebellar lobules 7, 8, 9 and 10, but not in lobules 2, 4 or 5 when compared to males with one session of sexual training. However, sexual training did not affect AR expression in Purkinje neurons according to their location in any of the cerebellar lobules studied. Third, castration decreased the AR density in the cerebellar lobules 1, 2, 5 and 9 in the superficial region, while in the deep region all cerebellar lobules, except lobule 6, showed a lower AR density after castration. Finally, testosterone replacement restored AR density to control levels in all cerebellar lobules in the superficial region that were affected by castration. Contrary, in the deep region hormonal replacement failed to restore the AR density to control level in the majority of the cerebellar lobules that were affected by castration. Altogether, our findings indicate that Purkinje neurons in the vermis are influenced by systemic testosterone in a region-dependent manner highlighting a link between the cerebellum and gonads in the male rat. The AR function in Purkinje neurons may be related to cerebellar plasticity since both estrogen and progesterone receptors, members of the nuclear receptor family, regulate plasticity processes in Purkinje neurons. We concluded the cerebellum is an important component of the neural circuit for male sexual behavior.


Subject(s)
Neurons/metabolism , Purkinje Cells/metabolism , Receptors, Androgen/metabolism , Testosterone/metabolism , Animals , Cerebellar Vermis/metabolism , Cerebellum , Immunohistochemistry , Male , Orchiectomy , Rats , Sexual Behavior/physiology
5.
Neurosci Biobehav Rev ; 43: 173-82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24769402

ABSTRACT

Many types of social attachments can be observed in nature. We discuss the neurobiology of two types (1) intraspecific (with a partner) and (2) parental (with the offspring). Stimuli related to copulation facilitate the first, whereas pregnancy, parturition and lactation facilitate the second. Both types develop as consequence of cohabitation. These events seem to stimulate similar neural pathways that increase (1) social recognition, (2) motivation, reward; and (3) decrease fear/anxiety. Subregions of the amygdala and cortex facilitate social recognition and also disinhibition to decrease rejection responses. The interrelationship between MeA, BNST, LS may mediate the activation of NAcc via the mPOA to increase motivation and reward. Cortical areas such as the ACC discriminate between stimuli. The interaction between OT and D2-type receptors in NAcc shell facilitates intraspecific attachment, but D1-type appears to facilitate parental attachment. This difference may be important for maternal females to direct their attention, motivation and expression of attachment toward the appropriate target.


Subject(s)
Brain/physiology , Motivation/physiology , Neural Pathways/physiology , Object Attachment , Recognition, Psychology/physiology , Animals , Female , Humans , Pregnancy , Reward , Social Behavior
6.
Anat Rec (Hoboken) ; 291(5): 586-92, 2008 May.
Article in English | MEDLINE | ID: mdl-18399549

ABSTRACT

Effects of gonadal hormones on dimorphic striated muscles such as the bulbocavernosus/levator ani complex related to male penile erection have been widely studied. However, the action of these hormones on pelvic nondimorphic muscles is not known. In the present study, the sensitivity of the male rat pubococcygeus muscle (Pcm) to gonadal hormones was studied measuring the cross-sectional area (CSA) of its fibers. For this, two experiments were done: in the first, the effect of castration, and in the second the effect of gonadal hormone administration was analyzed. We found that castration after 6 weeks significantly reduced the average CSA of the fibers of this muscle and that castration after 2 or 6 weeks reduced the percentage of fibers with higher CSAs, but only castration after 6 weeks increased the percentage of fibers with the lowest CSA. In comparison with castrated animals implanted with an empty Silastic capsule, Silastic implants of testosterone propionate or dihydrotestosterone significantly increased the average CSA of Pcm fibers, and the treatment with testosterone propionate, estradiol benzoate, or dihydrotestosterone decreased the percentage of fibers with low CSAs and increased the percentage with larger CSAs. Our results could be considered for therapy in patients with damage of the Pcm, and suffering urinary incontinence or ejaculatory dysfunctions.


Subject(s)
Gonadal Steroid Hormones/physiology , Muscle Fibers, Skeletal/physiology , Pelvic Floor/physiology , Animals , Castration , Male , Rats , Rats, Wistar
7.
Physiol Behav ; 91(1): 120-5, 2007 May 16.
Article in English | MEDLINE | ID: mdl-17343882

ABSTRACT

The scrotum, representing the pouch surrounding the testes and their associated structures, plays a significant role in maintaining the gonad at a temperature lower than that of the body. Although thermoregulation of the testes has been ascribed as a main function of the scrotum, here we found that mechanical stimulation of the scrotum is important during mating to facilitate the appropriate expulsion of semen during ejaculation. Previously we showed that the scrotal skin area is innervated by two nerve branches, the proximal (Psb) and distal (Dsb) scrotal branches which supply the proximal or distal half of the scrotum, respectively. The sensory field of each nerve is testosterone-dependent. The decreased androgen levels following castration reduce the sensitive area to mechanical stimuli that can be restored following exogenous administration of the hormone. Here, we tested the effect of scrotal nerve transection on sexual parameters of experienced male rats. Data show that lesion of PSb or DSb alone or combined did not affect the execution of sexual behavior. However, these lesions significantly reduced the proportion of males that expelled semen during ejaculation, with that semen showing a reduced quantity of sperm. Thus, scrotal nerves are important in reproduction not for the appropriate display of sexual behavior, but for the expulsion of a normal quantity of semen and number of sperm during ejaculation. Our suggestion is that scrotal afferents trigger spinal reflexes to activate autonomic efferents supplying the male reproductive tract for the control of seminal emission.


Subject(s)
Ejaculation/physiology , Scrotum/innervation , Scrotum/physiology , Semen/physiology , Animals , Cell Survival/physiology , Color , Copulation/physiology , Denervation , Female , Male , Neurons, Afferent/physiology , Ovariectomy , Rats , Rats, Wistar , Semen/cytology , Sperm Count , Sperm Motility/physiology , Spermatozoa/physiology , Viscosity
8.
Bol. estud. méd. biol ; 41(1/4): 3-7, ene.-dic. 1993. tab
Article in English | LILACS | ID: lil-135043

ABSTRACT

En ratas Wistar normales y tratadas neonatalmente con tiroxina, se obtuvieron cortes seriados del tálamo, teñidos con el método de Golgi-Cox en las edades de 12,20 y 30 días. En la zona de núcleo reticular talámico (TRN), se contó el número de neuronas visibles, el área y la máxima extensión transversal del TRN en un total de 120 secciones. Los hallazgos indicaron que con relación al numero de neuronas en los animales tratados con T4, ocurrió un incremento signifiativo inicial de ellas a los 12 días de edad, seguido de un decremento igualmente significativo a los 20 y 30 días postnatales. Con respecto al área y a la máxima extensión transversal del TRN, sólo se observó una reducción progresiva que alcanzó sus valores más bajos a los 30 días de edad, sin ocurrir el incremento inicial que se ha descrito para el tejido neuronal. Los hallazgos sugieren que el tratamiento neonatal con T4, pudiera interferir con el desarrollo neuronal del TRN y, asimismo, a largo plazo, con las funciones modulatorias sensoriales del TRN


Subject(s)
Animals , Rats , Histology, Comparative/instrumentation , Neurons/drug effects , Thalamus , Thyroxine/pharmacology , Histology, Comparative , Neurons/cytology , Neurons/physiology , Thalamus/cytology , Thyroxine/administration & dosage , Thyroxine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...