Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Rev. Rol enferm ; 46(2): 8-18, feb. 2023. ilus, graf, tab
Article in Spanish | IBECS | ID: ibc-215595

ABSTRACT

La osteoartritis (OA) de rodilla es una de las principales causas de dolor y discapacidad en todo el mundo con un impacto socioeconómico importante, que afecta a la calidad de vida de los pacientes y repercute negativamente en el Sistema Nacional de Salud.El objetivo del estudio ha sido evaluar el efecto de un complemento alimenticio con péptidos de colágeno de bajo peso molecular sobre los síntomas de la OA (dolor y limitación funcional).Se realizó un ensayo clínico aleatorizado, doble ciego, controlado con placebo y paralelo de dos brazos con un periodo de seguimiento de 6 meses. El estudio incluyó a 120 pacientes con diagnóstico de gonartrosis grado 2 o 3 y artralgia, con una puntuación mínima de 50 mm (rango de 0 a 100 mm) en la escala visual analógica (EVA) de dolor. Sesenta pacientes fueron asignados al grupo experimental (GrA), que recibió 1 sobre al día del complemento alimenticio que contenía colágeno hidrolizado; el otro grupo (n=60) recibió 1 sobre al día con placebo (GrP). Los sujetos fueron evaluados en una visita inicial, antes del tratamiento (T0) y en la visita final (T1) al concluir los 6 meses del periodo de seguimiento.Ambos grupos de tratamiento fueron comparables en la visita inicial (T0). En la visita final (T1), el GrA (comparado con el GrP), experimentó una disminución estadísticamente significativa en la intensidad del dolor (escala visual analógica, EVA) y la puntuación recogida en el índice algofuncional de Lequesne. También disminuyeron en T1 las cifras de proteína C reactiva (PCR) y la velocidad de sedimentación globular (VSG) en el GrA. No se observaron efectos adversos durante el estudio.El CH mejoró los síntomas de dolor osteoarticular y la capacidad funcional en pacientes con gonartrosis, con un buen perfil de tolerancia y seguridad. (AU)


Knee osteoarthritis is a leading cause of pain and disability worldwide, having a considerable socioeconomical impact on both the health-care system and the patient quality of life.The aim of the study was to assess the effect of a food supplement containing low molecular collagen peptides in the symptoms of osteoarthritis (OA) (pain and functional limitation).A 6-month, randomized, double-blind, placebo-controlled and parallel two-arm study was conducted in 120 patients diagnosed with grade 2 or 3 OA and pain, with a minimum score of 50 mm (range 0 to 10 mm) in the visual analogic scale (VAS) for pain. The investigational product (n=60) or placebo (n=60) was taken once daily, and subjects were assessed at baseline (T0, pre-treatment) and after a follow-up period of 6 months (T1).Both groups were comparable at baseline. Compared to placebo, changes in VAS, Lequesne algofunctional index (LAI), C-Reactive Protein (CRP) and Erythrocyte Sedimentation Rate (ESR) after six months of treatment, were significant lower in the group of patients taking the active product. No adverse effects were reported during the study.The HC improved the osteoarticular pain and physical function in patients with knee OA. Furthermore, it was well tolerated and satisfactory; and showed adequate results in terms of safety and acceptability of HC. The food supplement may be complementary of drug therapy in knee osteoarthritis. (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Osteoarthritis, Knee/diet therapy , Dietary Supplements , Collagen , Peptides
2.
Rev. Rol enferm ; 45(6): 16-22, Jun. 2022. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-207509

ABSTRACT

Un buen funcionamiento familiar puede ayudar a los cuidadores en la toma de decisiones y en la resolución de problemas o dudas que pudieran surgir como resultado de las demandas del cuidado. Este estudio tiene como objetivo analizar la funcionalidad familiar de los cuidadores de personas con patología neurológica y su relación con las variables sociodemográficas, el nivel de sobrecarga y el apoyo social percibido.Método: Se reclutó a 58 cuidadores de personas con patología neurológica en la región del Alentejo (Portugal). Se realizó un muestreo por conveniencia entre las asociaciones de familiares de personas con alteraciones neurológicas. Para la obtención de los datos se llevó a cabo una entrevista individual en la que se incluyó el cuestionario de APGAR Familiar, la Escala de Apoyo Social Percibido de Duke UNK-11 y la Escala de Zarit.Resultados: Un 48,3% de las familias funcionan normalmente y un 51,7% muestran disfuncionalidad. Además existe relación entre la funcionalidad familiar y las horas dedicadas a cuidar, la sobrecarga percibida y el apoyo social percibido por los cuidadores.Conclusiones: los cuidadores que pertenecen a familias disfuncionales perciben un apoyo social bajo, dedican más horas al cuidado familiar y presentan niveles de sobrecarga intensa más elevados. (AU)


Good family functioning can help caregivers in decision making and in the resolution of problems or doubts that may arise as a result of the demands of caregiving. This study aims to analyse the family functioning of caregivers of people with neurological pathology and its relationship with sociodemographic variables, the level of overload and perceived social support.Methods: 58 caregivers of people with neurological pathology were recruited in the region of Alentejo (Portugal). A convenience sampling was carried out among the associations of relatives of people with neurological disorders. To obtain the data, an individual interview was carried out, including the Family APGAR questionnaire, the Duke UNK-11 Perceived Social Support Scale and the Zarit Scale.Results: 48.3% of the family’s function normally and 51.7% show dysfunctionality. There is also a relationship between family functioning and hours spent on caregiving, perceived overload and caregivers’ perceived social support.Conclusions: caregivers belonging to dysfunctional families perceive low social support, spend more hours on family caregiving and have higher levels of intense overload. (AU)


Subject(s)
Humans , Aged , Aged, 80 and over , Caregivers/psychology , Caregivers/trends , Nervous System Diseases , Family Health , Geriatrics , Surveys and Questionnaires
3.
Rev. Rol enferm ; 43(4): 248-255, abr. 2020. ilus, graf
Article in Spanish | IBECS | ID: ibc-193742

ABSTRACT

Los datos demográficos en España confirman el envejecimiento progresivo de la población y el rápido crecimiento del colectivo de personas por encima de los 65 años. Las personas mayores son las que más utilizan los recursos socio-sanitarios y consumen más medicamentos. El concepto de anciano frágil hace referencia al estado de mayor vulnerabilidad fisiológica que el proceso de envejecimiento confiere a las personas mayores, y que contribuye también a la importante variación en la respuesta a los fármacos en pacientes mayores. El paciente mayor presenta una acentuada tendencia a la comorbilidad y prevalencia de enfermedades crónicas y, como consecuencia, se encuentra habitualmente polimedicado, situación que favorece la producción de interacciones farmacológicas y errores con los medicamentos, y que dificulta también el cumplimiento de la terapéutica. En definitiva, la polifarmacia se relaciona con una mayor incidencia de fracaso terapéutico y reacciones adversas a los medicamentos en los pacientes mayores. La falta de adherencia a la medicación es muy frecuente en el anciano, y es uno de los primeros problemas que hay que analizar cuando detectamos que la medicación no es efectiva. Constituye un objetivo prioritario para los profesionales sanitarios la instauración de medidas para identificar a los pacientes ancianos más vulnerables, así como los problemas relacionados con los medicamentos en estos pacientes. Es conveniente realizar una monitorización rutinaria y minuciosa del paciente anciano, del número de medicamentos administrados, con receta y sin ella, y su grado de utilidad clínica para así poder realizar ajustes en la dosis, o en el régimen de administración de los fármacos


The demographic data in Spain confirm the progressive ageing of the population and the rapid growth in the number of persons over the age of 65. Older people are the ones who use socio-health resources the most and consume more medicines. In the fragile elderly, there is an ageing-related state of higher physiological vulnerability that might also be affecting therapeutic drug response. The elderly has a trend towards higher rates of comorbidity and prevalence of chronic diseases and, hence, they usually are polimedicated patients. Polyphamacy may result in drug-drug interactions, medication errors and non-adherence to drug therapy, which is leading to a higher incidence of therapeutic failure and adverse drug reactions in elderly patients. Non-compliance with medication regimens is so common in the elderly that it should be the first matter to check when drug therapy appears to be ineffective. It is a main goal for the healthcare professionals to identify, among the elderly, those patients who are at the highest risk, and to recognize medications that are most likely to precipitate drug-related problems. It is recommending on a routine basis to carry out a thorough evaluation of the number, and clinical utility of non-prescribed and prescribed drugs to be taken by the patient. It may help to prevent and correct drug-related mishaps in elderly patients


Subject(s)
Humans , Aged , Drug Utilization/statistics & numerical data , Drug Prescriptions/statistics & numerical data , Frail Elderly , Polypharmacy , Treatment Adherence and Compliance/statistics & numerical data
4.
Rev Enferm ; 38(5): 42-5, 2015 May.
Article in Spanish | MEDLINE | ID: mdl-26540896

ABSTRACT

This article is focusing on the current debate that prescription of generic drugs is producing among patients and healthcare professionals. Following European Medicine Agency (EMA) recommendations, a number of generic medicines have recently been withdrawn from the market in Spain. The authorization for these generic drugs was primarily based on clinical studies conducted at GVK Biosciences in Hyderabad, India. The EMA inspection of GVK revealed data manipulation of electrocardiograms during the development of some studies of generic medicines. These manipulations had taken place over a period of at least five years. The article is also dealing with the consideration that bioavailability and bioequivalence studies receive as a cornerstone to approve generic drugs, and the discrepancies between the national regulatory agencies of medicines to implement guidelines of approval. Likewise, in the last few years, the rapid expansion of clinical trial activity regarding generic medicines and other drugs in emerging markets, is often leading to doubt on the integrity of the way trials were performed and on the reliability of data obtained from these studies.


Subject(s)
Drugs, Generic , Therapeutic Equivalency , Humans , Patient Safety , Treatment Outcome
5.
Rev. Rol enferm ; 38(5): 362-365, mayo 2015.
Article in Spanish | IBECS | ID: ibc-139936

ABSTRACT

El artículo plantea un tema de actualidad que está relacionado con el debate que la prescripción de medicamentos genéricos produce entre los pacientes y los profesionales de la salud. Siguiendo las directrices de la Agencia Europea del Medicamento (EMA), un número importante de especialidades farmacéuticas genéricas se han retirado recientemente del mercado en España. La autorización para la comercialización de estos medicamentos se basaba en estudios clínicos desarrollados en la empresa GVK, en Hyderabad (India). La inspección de la EMA sobre GVK reveló una manipulación en los resultados de los electrocardiogramas durante el desarrollo de los estudios con los medicamentos genéricos. Dichas manipulaciones habían tenido lugar durante un periodo de al menos cinco años. El artículo resalta también la importancia que reciben los estudios de biodisponibilidad y bioequivalencia, por considerarse la piedra angular en la aprobación de un medicamento genérico, y destaca las discrepancias en las normativas entre las agencias reguladoras de medicamentos de los diferentes países. Al mismo tiempo, la rápida proliferación en los últimos años de ensayos clínicos con todo tipo de fármacos y medicamentos genéricos en países emergentes plantea algunas dudas sobre la integridad y métodos de realización, así como sobre la fiabilidad de los resultados obtenidos en estos estudios (AU)


This article is focusing on the current debate that prescription of generic drugs is producing among patients and healthcare professionals. Following European Medicine Agency (EMA) recommendations, a number of generic medicines have recently been withdrawn from the market in Spain. The authorization for these generic drugs was primarily based on clinical studies conducted at GVK Biosciences in Hyderabad, India. The EMA inspection of GVK revealed data manipulation of electrocardiograms during the development of some studies of generic medicines. These manipulations had taken place over a period of at least five years. The article is also dealing with the consideration that bioavailability and bioequivalence studies receive as a cornerstone to approve generic drugs, and the discrepancies between the national regulatory agencies of medicines to implement guidelines of approval. Likewise, in the last few years, the rapid expansion of clinical trial activity regarding generic medicines and other drugs in emerging markets, is often leading to doubt on the integrity of the way trials were performed and on the reliability of data obtained from these studies (AU)


Subject(s)
Humans , Drugs, Generic/therapeutic use , Therapeutic Equivalency , Drug Evaluation , Treatment Outcome , Efficacy , Patient Safety , Biological Availability , Drug Substitution , Drug Recalls
6.
Rev Enferm ; 36(1): 41-50, 2013 Jan.
Article in Spanish | MEDLINE | ID: mdl-23427736

ABSTRACT

Not all patients respond to drug therapy in a uniform and beneficial fashion. The goal of this article is to describe the contribution of genetic variation to drug response, with a focus on drugs used in cardiovascular therapy. The rapid development of techniques in the area of genome analysis has facilitated identification of new pharmacogenomic biomarkers that can provide predictive tools for improvement of drug response and fewer incidence of adverse drug reactions. Such biomarkers mainly originate from genes encoding drug-metabolizing enzymes, drug transporters, drug targets and human leukocyte antigens. However, despite significant progress in pharmacogenomic research, only a few drugs require a pharmacogenetic test before prescription. Among the several gaps that limit the application of pharmacogenetics, it deserves to be mentioned the complex nature of drug response, that makes difficult to disentangle the interplay between genetics and environment leading to pharmacological phenotype. We have to spare no effort in the identification of genetic biomarkers related to the pathogenesis of the diseases and therapeutic targets. It may help clinicians to individualize dosing drug regimen, maximize drug efficacy and enhance drug safety with certain drugs and populations at risk.


Subject(s)
Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Precision Medicine , Genetic Markers , Humans , Pharmacogenetics
7.
Rev. Rol enferm ; 36(1): 40-50, ene. 2013. ilus, tab
Article in Spanish | IBECS | ID: ibc-113840

ABSTRACT

Todos los pacientes no responden de forma idéntica a los medicamentos en términos de eficacia y/o toxicidad. El objetivo de este artículo es describir la importancia que las características genéticas de una persona tienen en la respuesta a los medicamentos, con un enfoque en la terapéutica cardiovascular. El rápido desarrollo de técnicas en los análisis genómicos ha permitido la identificación de nuevos biomarcadores genéticos que pueden ser utilizados como herramientas de predicción, en aras de una respuesta farmacológica más segura y que conlleve una incidencia menor de reacciones adversas a la medicación. Dichos biomarcadores han sido identificados, principalmente, a partir de los genes que codifican la síntesis de enzimas metabólicas de fármacos, transportadores y receptores, así como antígenos humanos de leucocitos (HLA). Sin embargo, a pesar del progreso significativo en la investigación farmacogenómica, solo unos pocos fármacos requieren la aplicación de un test farmacogenético del paciente previo a la prescripción. Entre las barreras con las que nos encontramos en su aplicación hay que mencionar la compleja naturaleza de la respuesta farmacológica, que resulta no solo de la influencia de los factores de riesgo genéticos, sino que es el producto de la interacción entre estos y los factores ambientales, originando lo que conocemos como fenotipo farmacológico. No podemos escatimar esfuerzos en la identificación de biomarcadores implicados en la etiopatogenia de las enfermedades y otros que actúan como dianas terapéuticas. Esto permitirá a los profesionales sanitarios individualizar la terapéutica en cada paciente y mejorar la eficacia y seguridad con determinados fármacos y grupos de población de riesgo(AU)


Not all patients respond to drug therapy in a uniform and beneficial fashion. The goal of this article is to describe the contribution of genetic variation to drug response, with a focus on drugs used in cardiovascular therapy. The rapid development of techniques in the area of genome analysis has facilitated identification of new pharmacogenomic biomarkers that can provide predictive tools for improvement of drug response and fewer incidence of adverse drug reactions. Such biomarkers mainly originate from genes encoding drug-metabolizing enzymes, drug transporters, drug targets and human leukocyte antigens. However, despite significant progress in pharmacogenomic research, only a few drugs require a pharmacogenetic test before prescription. Among the several gaps that limit the application of pharmacogenetics, it deserves to be mentioned the complex nature of drug response, that makes difficult to disentangle the interplay between genetics and environment leading to pharmacological phenotype. We have to spare no effort in the identification of genetic biomarkers related to the pathogenesis of the diseases and therapeutic targets. It may help clinicians to individualize dosing drug regimen, maximize drug efficacy and enhance drug safety with certain drugs and populations at risk (AU)


Subject(s)
Humans , Male , Female , Biomarkers/analysis , Biomarkers/metabolism , Cardiovascular Agents/administration & dosage , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/nursing , Cardiovascular Physiological Phenomena , Cardiovascular Diseases/genetics , Cardiovascular Physiological Phenomena/genetics , Cardiovascular Abnormalities/drug therapy , Cardiovascular Abnormalities/genetics , Treatment Outcome , Evaluation of the Efficacy-Effectiveness of Interventions
8.
Rev Enferm ; 35(4): 8-18, 2012 Apr.
Article in Spanish | MEDLINE | ID: mdl-22745995

ABSTRACT

In a drug interaction, the effects of one drug can be increased or decreased or a quite new effect produced by the previous, concurrent or subsequent administration of another substance, including prescription and nonprescription drugs, food, tobacco or alcohol. The effect of the interaction can be desirable, inconsequential, or adverse. The increasing number of drugs available and the increasing use of multidrug therapeutic regimens enhance the potential for drug interactions. However, in clinical practice, most interactions are not significant or rarely of significance. It is when the interaction leads to adverse consequences that it comes to the attention of the patient and physician. Interactions may occur by pharmacokinetic or pharmacodynamics mechanisms. Pharmacokinetic interactions represent the modification of one substance (the interacting substance) on the ADME processes of absorption, distribution, metabolism or excretion of a drug (the index drug). Subsequently, it may lead to changes in the concentration of the index drug at the receptor sites. Drug interactions with a pharmacodynamic basis involve actions on the same receptor or physiological systems through either synergism or antagonism. Many drug interactions can be predicted if the pharmacodynamics effects, pharmacokinetic properties and mechanisms of action of the interacting agents are known. The most obvious interactions are those producing altered pharmacokinetic of drugs with a low therapeutic index (oral anticoagulants, antidiabetic drugs, digoxin, benzodiazepines and immunosuppressant and cytotoxic drugs).


Subject(s)
Drug Interactions , Cheese , Humans
9.
Rev Enferm ; 35(2): 10-9, 2012 Feb.
Article in Spanish | MEDLINE | ID: mdl-22670381

ABSTRACT

The World Health Organization and all drug regulatory agencies (DRA) support the commercialization of generic medicines because they control costs and are irreplaceable therapeutic options in countries lacking the innovator product. Generic drugs are widely considered to be cost-efficient substitutes for brand-name medications. They make up about 20% of the total number of prescriptions in Spain, a figure that is still far from the use of generic drugs in USA and other European countries. Despite economical interest in this issue, in this article we review the interest of generic drugs from a pharmacological and clinical perspective that must undertake drug quality to ensure drug efficacy and safety of the patients. A generic drug (generic drugs, short: generics) is defined as "a drug product that is comparable to brand/reference listed drug product in dosage form, strength, route of administration, quality and performance characteristics, and intended use". Both the reference drug and the generic drug have to demonstrate previously they are therapeutically equivalent. With the exception of parenteral drugs, two products have demonstrated to be therapeutically equivalent if after administration in the same molar dose, their effects with respect to both efficacy and safety are essentially the same, as determined from bioequivalence studies in terms of comparison of appropriate pharmacokinetic parameters and bioavailability. Parenteral formulations, however, are not required to demonstrate therapeutic equivalence because it may be considered self-evident. Such assumptions have never been challenged, but there are reasons to do so for parenteral antimicrobials. It is interesting to highlight that although brand-name drugs and generic drugs are both approved by DRA and may be interchangeable with respect to their clinical effects, they can differ substantially in their appearance. Consumers of brand-name medications receive identical-appearing batches of pills with each refill, whereas consumers of generic drugs must be prepared to receive pills of a different size, color, and shape, depending on which manufacturer is supplying their pharmacies.


Subject(s)
Drugs, Generic/economics , Drugs, Generic/standards , Humans , Quality Control , Therapeutic Equivalency
10.
Rev Enferm ; 35(1): 8-15, 2012 Jan.
Article in Spanish | MEDLINE | ID: mdl-22558708

ABSTRACT

Pharmacodynamics can be defined as the study of the biochemical and physiological effects of drugs and their mechanisms of action. The objectives of the analysis of drug action are to delineate the chemical or physical interactions between drug and target cell and to characterize the full sequence and scope of actions of each drug. The effects of most drugs result from their interaction with macromolecular components of the organism. These interactions alter the function of the pertinent component and thereby initiate the biochemical and physiological changes that are characteristic of the response to the drug. This concept, now obvious, had its origin in the experimental work of Ehrlich and Langley during the late nineteenth and early twentieth centuries. The term receptor was coined to denote the component of the organism with which the chemical agent was presumed to interact. The statement that the receptor for a drug can be any functional macromolecular component of the organism has several fundamental corollaries. One is that a drug potentially is capable of altering the rate at which any bodily function proceeds. Another is that drugs do not create effect, but instead modulate functions. The features of agonists and blockade by antagonists are also described.


Subject(s)
Drug Therapy , Pharmacological Phenomena , Receptors, Drug/physiology , Humans
11.
Rev. Rol enferm ; 35(4): 248-258, abr. 2012. tab, ilus
Article in Spanish | IBECS | ID: ibc-100834

ABSTRACT

Una interacción medicamentosa ocurre cuando se produce una alteración medible cuantitativa (aumento o disminución), o cualitativa (aparición de un efecto, síntoma o signo no habitual), de la respuesta de un fármaco, como consecuencia de la administración previa o concomitante de otra sustancia química, ya sea esta otro fármaco, una hierba medicinal, cualquier componente alimentario de la dieta, tabaco, alcohol o drogas ilegales. La interacción puede no tener consecuencias, ser beneficiosa, o producir resultados adversos en el paciente. Debido a la disponibilidad de múltiples fármacos y regímenes terapéuticos, el riesgo potencial de interacciones farmacológicas es muy elevado. No obstante, en la práctica clínica, la mayoría de ellas carecen de relevancia clínica. Sólo cuando se producen reacciones adversas como resultado de la interacción, esta adquiere interés para el médico y el paciente. Las interacciones pueden ocurrir a nivel farmacocinético o farmacodinámico. En las farmacocineticas la sustancia precipitante actúa sobre los procesos de la ADME (absorción, distribución, metabolismo o excreción de fármacos) del fármaco objeto y, como consecuencia, se producen cambios en la concentración del medicamento a nivel de la biofase. Las interacciones con un mecanismo farmacodinámico ocurren en el mismo receptor o en un sistema fisiológico determinado, produciendo un sinergismo o antagonismo de la respuesta farmacológica. Las interacciones pueden predecirse y evitarse si se conocen los efectos farmacodinámicos, las propiedades farmacocinéticas y los mecanismos de acción de los agentes que interaccionan en el proceso. Las más evidentes son aquellas que producen una alteración en la farmacocinética de un fármaco con un bajo índice terapéutico (anticoagulantes orales, antidiabéticos, digoxina, benzodiacepinas, inmunosupresores y quimioterapicos)(AU)


In a drug interaction, the effects of one drug can be increased or decreased or a quite new effect produced by the previous, concurrent or subsequent administration of another substance, including prescription and nonprescription drugs, food, tobacco or alcohol. The effect of the interaction can be desirable, inconsequential, or adverse. The increasing number of drugs available and the increasing use of multidrug therapeutic regimens enhance the potential for drug interactions. However, in clinical practice, most interactions are not significant or rarely of significance. It is when the interaction leads to adverse consequences that it comes to the attention of the patient and physician. Interactions may occur by pharmacokinetic or pharmacodynamics mechanisms. Pharmacokinetic interactions represent the modification of one substance (the interacting substance) on the ADME processes of absorption, distribution, metabolism or excretion of a drug (the index drug). Subsequently, It may lead to changes in the concentration of the index drug at the receptor sites. Drug interactions with a pharmacodynamic basis involve actions on the same receptor or physiological systems through either synergism or antagonism. Many drug interactions can be predicted if the pharmacodynamics effects, pharmacokinetic properties and mechanisms of action of the interacting agents are known. The most obvious interactions are those producing altered pharmacokinetic of drugs with a low therapeutic index (oral anticoagulants, antidiabetic drugs, digoxin, benzodiazepines and immunosuppressant and cytotoxic drugs)(AU)


Subject(s)
Humans , Male , Female , Drug Interactions/physiology , /nursing , Nurse's Role , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Hypoglycemic Agents/therapeutic use , Digoxin/therapeutic use , Benzodiazepines/therapeutic use
12.
Rev. Rol enferm ; 35(2): 90-99, feb. 2012. ilus
Article in Spanish | IBECS | ID: ibc-100829

ABSTRACT

La Organización Mundial de la Salud y todas las agencias reguladoras de medicamentos (ARM) están promoviendo la comercialización de medicamentos genéricos con un objetivo fundamental de contención del gasto farmacéutico. Además los medicamentos genéricos son opciones terapéuticas irreemplazables en países que carecen de los medicamentos innovadores. Los medicamentos genéricos son considerados sustitutos coste-eficientes de los medicamentos de marca, y en España suponen alrededor del 20% del total de prescripciones, cifras todavía lejanas con respecto de la utilización de los mismos en Estados Unidos y otros países de la Unión Europea. A pesar del interés económico en el empleo de genéricos, en este artículo revisaremos su interés desde el punto de vista clínico-farmacológico como sustancias que deben cumplir unos requisitos mínimos de calidad para garantizar su eficacia y seguridad en los pacientes. Un medicamento genérico es un fármaco comparable al medicamento innovador o de referencia (o de marca) en la dosis, presentación, vía de administración, cualidad e indicaciones. El medicamento genérico y el de marca tienen que demostrar su equivalencia terapéutica. Con la excepción de los administrados por vía parenteral, dos medicamentos demuestran su equivalencia terapéutica si tras la administración de una dosis molar idéntica, sus efectos en términos de eficacia y seguridad son similares, comprobado exclusivamente por los estudios de bioequivalencia, comparando los parámetros farmacocinéticos y la biodisponibilidad de los productos. Las formulaciones parenterales no tienen que demostrar su bioequivalencia terapéutica ya que ella se considera evidente desde el principio. Tal consideración debería revisarse, especialmente en relación con los medicamentos antiinfecciones parenterales. Conviene mencionar que aunque un medicamento de marca y el correspondiente genérico, tras su aprobación por la correspondiente agencia reguladora, son intercambiables en relación con sus efectos clínicos, pueden variar de forma muy notoria en las características de la presentación y su apariencia. Los consumidores de los medicamentos de marca reciben siempre el mismo producto con las mismas características. Sin embargo, los pacientes que toman fármacos genéricos tienen que asumir que los comprimidos o las cápsulas pueden variar en el tamaño, color y la forma dependiendo del tipo de fabricante que suministra el producto(AU)


The World Health Organization and all drug regulatory agencies (DRA) support the commercialization of generic medicines because they control costs and are irreplaceable therapeutic options in countries lacking the innovator product. Generic drugs are widely considered to be cost-efficient substitutes for brand-name medications. They make up about 20% of the total number of prescriptions in Spain, a figure that is still far from the use of generic drugs in USA and other European countries. Despite economical interest in this issue, in this article we review the interest of generic drugs from a pharmacological and clinical perspective that must undertake drug quality to ensure drug efficacy and safety of the patients. A generic drug (generic drugs, short: generics) is defined as «a drug product that is comparable to brand/reference listed drug product in dosage form, strength, route of administration, quality and performance characteristics, and intended use». Both the reference drug and the generic drug have to demonstrate previously they are therapeutically equivalent. With the exception of parenteral drugs, two products have demonstrated to be therapeutically equivalent if after administration in the same molar dose, their effects with respect to both efficacy and safety are essentially the same, as determined from bioequivalence studies in terms of comparison of appropriate pharmacokinetic parameters and bioavailability. Parenteral formulations, however, are not required to demonstrate therapeutic equivalence because it may be considered self-evident. Such assumptions have never been challenged, but there are reasons to do so for parenteral antimicrobials. It is interesting to highlight that although brand-name drugs and generic drugs are both approved by DRA and may be interchangeable with respect to their clinical effects, they can differ substantially in their appearance. Consumers of brand-name medications receive identical-appearing batches of pills with each refill, whereas consumers of generic drugs must be prepared to receive pills of a different size, color, and shape, depending on which manufacturer is supplying their pharmacies(AU)


Subject(s)
Humans , Male , Female , Drugs, Generic/therapeutic use , Drug Prescriptions/nursing , Prescriptions/nursing , /methods , Quality of Health Care , Therapeutic Equivalency , Infusions, Parenteral/economics , Infusions, Parenteral/nursing , Health Expenditures , 34002
13.
Rev. Rol enferm ; 35(1): 8-15, ene. 2012. ilus, tab
Article in Spanish | IBECS | ID: ibc-143539

ABSTRACT

El proceso farmacodinámico se define como el estudio de los efectos bioquímicos y fisiológicos así como los mecanismos de acción de los fármacos en el organismo. Los objetivos en el análisis del proceso farmacodinámico pretenden clarificar la interacción físico-química entre el fármaco y la célula diana y, de esta forma, caracterizar la secuencia completa de acciones farmacológicas derivadas del uso de los fármacos. Los efectos farmacológicos son la consecuencia natural de la interacción del fármaco con los componentes macromoleculares del organismo. A partir de dicha interacción se inician los cambios bioquímicos y fisiológicos que caracterizan la respuesta de un fármaco. Este concepto, que en la actualidad resulta obvio, tuvo su origen en el trabajo de Ehrlich y Langley al final del siglo XIX y comienzos del XX. El concepto de receptor fue elaborado para destacar ese componente macromolecular orgánico sobre el que se presumía que interaccionaba la sustancia química. La afirmación de que el receptor farmacológico puede ser cualquier componente funcional del organismo, tiene diversas connotaciones. Una es que un fármaco puede modificar la velocidad de casi cualquier proceso fisiológico; y, por otro lado, un fármaco no crea o inventa efectos nuevos en el organismo, sino que se limita a regular determinadas funciones preexistentes en las células. En este capítulo se describen también las características de los fármacos agonistas y tipos de bloqueo, a nivel de receptores, producidos por los fármacos antagonistas (AU)


Pharmacodynamics can be defined as the study of the biochemical and physiological effects of drugs and their mechanisms of action. The objectives of the analysis of drug action are to delineate the chemical or physical interactions between drug and target cell and to characterize the full sequence and scope of actions of each drug. The effects of most drugs result from their interaction with macromolecular components of the organism. These interactions alter the function of the pertinent component and thereby initiate the biochemical and physiological changes that are characteristic of the response to the drug. This concept, now obvious, had its origin in the experimental work of Ehrlich and Langley during the late nineteenth and early twentieth centuries. The term receptor was coined to denote the component of the organism with which the chemical agent was presumed to interact. The statement that the receptor for a drug can be any functional macromolecular component of the organism has several fundamental corollaries. One is that a drug potentially is capable of altering the rate at which any bodily function proceeds. Another is that drugs do not create effect, but instead modulate functions. The features of agonists and blockade by antagonists are also described (AU)


Subject(s)
Humans , Pharmacokinetics , Receptors, Drug , Receptors, Cell Surface , Drug Interactions/physiology , Drug Antagonism
15.
Rev Enferm ; 34(9): 24-31, 2011 Sep.
Article in Spanish | MEDLINE | ID: mdl-22013710

ABSTRACT

The main route of excretion of drugs is the kidney. Other routes include the lungs; breast milk; sweat; tears, and genital secretions (alarming if the patient is not expecting the orange-red discoloration caused by rifampicin); bile (leading to recirculation of some compounds, for example chloramphenicol, whose inactive metabolites are reactivated by hydrolysis in the gut, morphine, rifampicin, tetracyclines, and digoxin); and saliva (sometimes used in monitoring drug concentrations in body fluids). Three processes determine the renal excretion of drugs: glomerular filtration, passive tubular reabsorption and active tubular secretion. Thus, total renal excretion = excretion by filtration + excretion by secretion - retention by reabsorption. If an active drug is metabolized mainly to inactive compounds, renal function will not greatly affect elimination of the parent compound. However, if the drug or an active metabolite is excreted unchanged via the kidneys, changes in renal function (i.e. chronic renal failure) will influence its elimination. Therefore, dose adjustment of the drug should be recommended.


Subject(s)
Pharmacokinetics , Biliary Tract/metabolism , Humans , Intestinal Mucosa/metabolism , Kidney/metabolism , Tissue Distribution
17.
Rev Enferm ; 34(7-8): 52-60, 2011.
Article in Spanish | MEDLINE | ID: mdl-21919387

ABSTRACT

In general, drug biotransformation reactions are classified as either phase 1 functionalization (mainly oxidative) reactions or phase 2 conjugation (biosynthetic) reactions. Phase 1 reactions introduce or expose a functional group on the parent compound and generally result in the loss of pharmacological activity. Phase 2 reactions lead to the formation of a covalent linkage between a functional group on the parent compound with glucuronic acid, sultate, glutathione, amino acids, or acetate. These highly polar conjugates are generally inactive and are excreted rapidly in the urine and feces. The metabolic conversion of drugs is enzymatic in nature. The enzyme systems involved in the biotransformation of drugs are localized in the liver although every tissue examined has some metabolic activity The enzymes involved in phase 7 reactions are located primarily in the endoplasmic reticulum while the phase 2 conjugation enzymes are mainly cytosolic. The cytochrome P450 monooxigenase system is the cornerstone and the major catalyst of drug biotransformation reactions. The CYP superfamily is divided into families and subfamilies of enzymes that are defined on the basis of similarities in the amino acid sequence. Currently, no doubt exists that the CYP-mediated reactions typically show pronounced interindividual variability that is evaluated under the scope of the pharmacogenetic discipline. In addition, therapeutic outcome may be influenced by a number of factors such as concomitant drug administration, diet or smoking, among others. It may regulate drug metabolism through modulation (induction or inhibition) of the activities of CYPs and hence, it may provoke the occurrence of severe adverse drug reactions.


Subject(s)
Pharmaceutical Preparations/metabolism , Humans , Pharmacokinetics , Tissue Distribution
18.
Rev. Rol enferm ; 34(9): 584-591, sept. 2011. tab, ilus
Article in Spanish | IBECS | ID: ibc-90659

ABSTRACT

El riñón constituye la vía principal de excreción de fármacos fuera del organismo. Junto con el aparato urinario, los fármacos se excretan a través de otras vías como los pulmones, la leche materna, el sudor, la secreción lagrimal y genital (la rifampicina produce una coloración rojo anaranjada), la bilis y la saliva. La excreción de algunos compuestos por via biliar (p.ej. cloranfenicol), puede dar lugar a un fenómeno de recirculación entero-hepática como consecuencia de la reactivación mediante hidrólisis intestinal de los metabolitos y su posterior reabsorción. Además de cloranfenicol, otros fármacos excretados a través de la bilis son la morfina, la rifampicina, las tetraciclinas y la digoxina. La saliva puede ser útil para la monitorización de fármacos que se concentran especialmente en este medio. Tres procesos determinan la excreción renal: la filtración glomerular, la reabsorción tubular pasiva y la secreción tubular activa. La excreción total de un fármaco en la orina es la resultante de dichos procesos, de forma que excreción renal= filtración + secreción – reabsorción. Si un compuesto farmacológico es inactivado, principalmente a través del metabolismo, la función renal no es un factor relevante en su eliminación. Sin embargo, la alteración de la función renal (p.ej. en la insuficiencia renal crónica) constituye un factor relevante en la eliminación de fármacos cuando éstos, o sus metabolitos activos, se expulsan principalmente por el riñón, sin transformación metabólica previa. En esta situación es recomendable ajustar la dosis en el paciente(AU)


The main route of excretion of drugs is the kidney. Other routes include the lungs; breast milk; sweat; tears, and genital secretions (alarming if the patient is not expecting the orange-red discoloration caused by rifampicin); bile (leading to recirculation of some compounds, for example chloramphenicol, whose inactive metabolites are reactivated by hydrolysis in the gut, morphine, rifampicin, tetracyclines, and digoxin); and saliva (sometimes used in monitoring drug concentrations in body fluids). Three processes determine the renal excretion of drugs: glomerular filtration, passive tubular reabsorption and active tubular secretion. Thus, total renal excretion= excretion by filtration + excretion by secretion – retention by reabsorption. If an active drug is metabolized mainly to inactive compounds, renal function will not greatly affect elimination of the parent compound. However, if the drug or an active metabolite is excreted unchanged via the kidneys, changes in renal function (i.e. chronic renal failure) will influence its elimination. Therefore, dose adjustment of the drug should be recommended(AU)


Subject(s)
Humans , Male , Female , Rifampin/metabolism , Rifampin/therapeutic use , Chloramphenicol/metabolism , Chloramphenicol/therapeutic use , Hydrolysis , Digoxin/therapeutic use , Saliva , Sweat , Modalities, Secretion and Excretion , Tetracyclines/metabolism , Tetracyclines/therapeutic use
19.
Rev. Rol enferm ; 34(7/8): 532-540, jul.-ago. 2011. tab, ilus
Article in Spanish | IBECS | ID: ibc-89796

ABSTRACT

En general, el metabolismo de fármacos engloba reacciones de fase 1 o funcionalización (principalmente oxidativas) y reacciones de conjugación (biosintésis) de fase 2. Las reacciones de fase 1 inactivan la sustancia (fármaco) original mediante la introducción de un grupo funcional en la molécula. En las reacciones de fase 2 se crea un enlace covalente entre el grupo funcional con alguna de las siguientes moléculas: ácido glucurónico, sulfato, glutatión, aminoácidos o ácido acético. El proceso de conjugación genera compuestos con una polaridad incrementada y, además, los inactiva y pueden ser excretados más rápidamente a través de la orina o las heces. La transformación metabólica de un fármaco es de naturaleza enzimática y aunque cualquier tejido puede – inicialmente– poseer actividad metabólica, los sistemas participantes en este proceso se localizan principalmente en el hígado. Las enzimas de fase 1 se ubican en el retículo endoplásmico y las de fase 2 tienen localización principalmente citosólica en los hepatocitos. El sistema enzimático de monooxigenasas del citocromo P450 es la piedra angular y el más importante en las reacciones metabólicas. Este sistema se divide en familias y subfamilias de enzimas que se clasifican en relación con la similitud en las secuencias de los aminoácidos de las diferentes proteínas. En la actualidad, no hay duda de que las reacciones metabólicas catalizadas por las isoenzimas CYPs presentan importantes variaciones, sometidas a estudio dentro de la disciplina de la farmacogenética. Además, la respuesta farmacológica puede verse afectada por multitud de factores tales como las interacciones farmacológicas, dieta del paciente o consumo de tabaco entre otros. Dichos factores modulan la actividad de los distintos citocromos mediante procesos de inducción o inhibición metabólica, que pueden desencadenar reacciones adversas, graves en algunos casos(AU)


In general, drug biotransformation reactions are classified as either phase 1 functionalization (mainly oxidative) reactions or phase 2 conjugation (biosynthetic) reactions. Phase 1 reactions introduce or expose a functional group on the parent compound and generally result in the loss of pharmacological activity. Phase 2 reactions lead to the formation of a covalent linkage between a functional group on the parent compound with glucuronic acid, sultate, glutathione, amino acids, or acetate. These highly polar conjugates are generally inactive and are excreted rapidly in the urine and feces. The metabolic conversion of drugs is enzymatic in nature. The enzyme systems involved in the biotransformation of drugs are localized in the liver, although every tissue examined has some metabolic activity. The enzymes involved in phase 1 reactions are located primarily in the endoplasmic reticulum while the phase 2 conjugation enzymes are mainly cytosolic. The cytochrome P450 monooxigenase system is the cornerstone and the major catalyst of drug biotransformation reactions. The CYP superfamily is divided into families and subfamilies of enzymes that are defined on the basis of similarities in the amino acid sequence. Currently, no doubt exists that the CYP-mediated reactions typically show pronounced interindividual variability that is evaluated under the scope of the pharmacogenetic discipline. In addition, therapeutic outcome may be influenced by a number of factors such as concomitant drug administration, diet or smoking, among others. It may regulate drug metabolism through modulation (induction or inhibition) of the activities of CYPs and hence, it may provoke the occurrence of severe adverse drug reactions(AU)


Subject(s)
Humans , Male , Female , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/metabolism , Drug Therapy/nursing , Drug Therapy , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/pharmacology , Pharmacogenetics/methods , Pharmacogenetics/education , Pharmacogenetics/organization & administration
20.
Rev Enferm ; 33(10): 48-52, 2010 Oct.
Article in Spanish | MEDLINE | ID: mdl-21137524

ABSTRACT

Once the drug has been given and reaches the vascular system of the patient, some drugs are distributed only to the body fluids (plasma plus extracellular water), while others are bound extensively in body tissues. Therefore, the volume of distribution of a drug is not a real volume. Indeed, it is an apparent volume giving a mathematical measure and an approach of the extent of tissue distribution of the drug into the body. Age, pregnancy, renal insufficiency and drug interactions among others, are pathophysiological factors that may alter the fraction of circulating drug bound to albumin and hence, its body distribution that may affect therapeutic response.


Subject(s)
Pharmacokinetics , Humans , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...