Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 144: 112278, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628166

ABSTRACT

The utility of patient-derived tumor cell lines as experimental models for glioblastoma has been challenged by limited representation of the in vivo tumor biology and low clinical translatability. Here, we report on longitudinal epigenetic and transcriptional profiling of seven glioblastoma spheroid cell line models cultured over an extended period. Molecular profiles were associated with drug response data obtained for 231 clinically used drugs. We show that the glioblastoma spheroid models remained molecularly stable and displayed reproducible drug responses over prolonged culture times of 30 in vitro passages. Integration of gene expression and drug response data identified predictive gene signatures linked to sensitivity to specific drugs, indicating the potential of gene expression-based prediction of glioblastoma therapy response. Our data thus empowers glioblastoma spheroid disease modeling as a useful preclinical assay that may uncover novel therapeutic vulnerabilities and associated molecular alterations.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Brain Neoplasms/drug therapy , Cell Proliferation/drug effects , Genomic Instability , Glioma/drug therapy , Transcriptome , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , DNA Mutational Analysis , Drug Screening Assays, Antitumor , Gene Expression Profiling , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Mutation , Reproducibility of Results , Spheroids, Cellular , Time Factors
2.
Oncogene ; 36(25): 3562-3575, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28166199

ABSTRACT

Dysregulation of the NF-κB transcription factor occurs in many cancer types. Krüppel-like family of transcription factors (KLFs) regulate the expression of genes involved in cell proliferation, differentiation and survival. Here, we report a new mechanism of NF-κB activation in glioblastoma through depletion of the KLF6 tumor suppressor. We show that KLF6 transactivates multiple genes negatively controlling the NF-κB pathway and consequently reduces NF-κB nuclear localization and downregulates NF-κB targets. Reconstitution of KLF6 attenuates their malignant phenotype and induces neural-like differentiation and senescence, consistent with NF-κB pathway inhibition. KLF6 is heterozygously deleted in 74.5% of the analyzed glioblastomas and predicts unfavorable patient prognosis suggesting that haploinsufficiency is a clinically relevant means of evading KLF6-dependent regulation of NF-κB. Together, our study identifies a new mechanism by which KLF6 regulates NF-κB signaling, and how this mechanism is circumvented in glioblastoma through KLF6 loss.


Subject(s)
Gene Deletion , Glioblastoma/genetics , Glioblastoma/metabolism , Haploinsufficiency , Kruppel-Like Transcription Factors/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins/genetics , Signal Transduction/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Kruppel-Like Factor 6 , Kruppel-Like Transcription Factors/metabolism , Male , NF-kappa B/genetics , Proto-Oncogene Proteins/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...