Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 108(5): 1154-1165, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36408612

ABSTRACT

CONTEXT: MicroRNAs (miRNAs)-short, single-stranded, noncoding RNAs-regulate several biological processes, including bone metabolism. OBJECTIVE: We investigated circulating miRNAs as promising biomarkers for treatment monitoring in women with postmenopausal osteoporosis on denosumab (DMAB) therapy. METHODS: In this prospective, observational, single-center study, 21 postmenopausal women treated with DMAB were included for a longitudinal follow-up of 2 years. Next-generation sequencing (NGS) was performed to screen for serological miRNAs at baseline, month 6, and month 24. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to confirm NGS findings in the entire cohort. Bone turnover markers (BTM) P1NP and CTX, and bone mineral density (BMD) by dual x-ray absorptiometry were assessed and correlated to miRNAs. RESULTS: BMD at the hip (5.5%, P = 0.0006) and lumbar spine significantly increased (11.4%, P = 0.017), and CTX (64.1%, P < 0.0001) and P1NP (69.3%, P < 0.0001) significantly decreased during treatment. NGS analysis revealed significant changes in miRNAs after 2 years of DMAB treatment but not after 6 months. Seven miRNAs were confirmed by RT-qPCR to be significantly changed during a 2-year course of DMAB treatment compared to baseline. Four of these were mainly transcribed in blood cells, including monocytes. Correlation analysis identified significant correlation between change in miRNA and change in BTMs as well as BMD. Based on effect size and correlation strength, miR-454-3p, miR-26b-5p, and miR-584-5p were defined as top biomarker candidates, with the strongest association to the sustained effect of denosumab on bone in osteoporotic patients. CONCLUSION: Two years of DMAB treatment resulted in upregulation of 7 miRNAs, 4 of which are mainly transcribed in monocytes, indicating a potential impact of DMAB on circulating osteoclast precursor cells. These changes were associated to BMD gain and BTM suppression and could therefore be useful for monitoring DMAB treatment response.


Subject(s)
Bone Density Conservation Agents , Circulating MicroRNA , MicroRNAs , Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Denosumab/therapeutic use , Denosumab/pharmacology , Postmenopause , Prospective Studies , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/genetics , Bone Density , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology , MicroRNAs/genetics , Biomarkers , Lumbar Vertebrae
2.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742976

ABSTRACT

Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Animals , Bone and Bones/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...