Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hum Mol Genet ; 20(10): 1893-905, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21349918

ABSTRACT

Dominant optic atrophy (DOA) is genetically heterogeneous and pathogenic mutations have been identified in the OPA1 and OPA3 genes, both encoding for mitochondrial proteins. We characterized clinical and laboratory features in a large OPA1-negative family with complicated DOA. Search for mitochondrial dysfunction was performed by studying muscle biopsies, fibroblasts, platelets and magnetic resonance (MR) spectroscopy. Genetic investigations included mitochondrial DNA (mtDNA) analysis, linkage analysis, copy number variation (CNV) analysis and candidate gene screening. Optic neuropathy was undistinguishable from that in OPA1-DOA and frequently associated with late-onset sensorineural hearing loss, increases of central conduction times at somato-sensory evoked potentials and various cardiac abnormalities. Serum lactic acid after exercise, platelet respiratory complex activities, adenosine triphosphate (ATP) content in fibroblasts and muscle phosphorus MR spectroscopy all failed to reveal a mitochondrial dysfunction. However, muscle biopsies and their mtDNA analysis showed increased mitochondrial biogenesis. Furthermore, patient's fibroblasts grown in the galactose medium were unable to increase ATP content compared with controls, and exhibited abnormally high rate of fusion activity. Genome-wide linkage revealed a locus on chromosome 16q21-q22 with a maximum two-point LOD score of 8.84 for the marker D16S752 and a non-recombinant interval of ∼ 6.96 cM. Genomic screening of 45 genes in this interval including several likely candidate genes (CALB2, CYB5B, TK2, DHODH, PLEKHG4) revealed no mutation. Moreover, we excluded the presence of CNVs using array-based comparative genome hybridization. The identification of a new OPA locus (OPA8) in this pedigree demonstrates further genetic heterogeneity in DOA, and our results indicate that the pathogenesis may still involve mitochondria.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Optic Atrophy, Autosomal Dominant/genetics , Adolescent , Adult , Child , Comparative Genomic Hybridization , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Female , Genome-Wide Association Study , Haplotypes , Humans , Male , Microsatellite Repeats/genetics , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/ultrastructure , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Pedigree , Polymorphism, Genetic/genetics , Retinal Vessels/pathology , Young Adult
2.
Brain ; 131(Pt 2): 338-51, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18158317

ABSTRACT

Mutations in OPA1, a dynamin-related GTPase involved in mitochondrial fusion, cristae organization and control of apoptosis, have been linked to non-syndromic optic neuropathy transmitted as an autosomal-dominant trait (DOA). We here report on eight patients from six independent families showing that mutations in the OPA1 gene can also be responsible for a syndromic form of DOA associated with sensorineural deafness, ataxia, axonal sensory-motor polyneuropathy, chronic progressive external ophthalmoplegia and mitochondrial myopathy with cytochrome c oxidase negative and Ragged Red Fibres. Most remarkably, we demonstrate that these patients all harboured multiple deletions of mitochondrial DNA (mtDNA) in their skeletal muscle, thus revealing an unrecognized role of the OPA1 protein in mtDNA stability. The five OPA1 mutations associated with these DOA 'plus' phenotypes were all mis-sense point mutations affecting highly conserved amino acid positions and the nuclear genes previously known to induce mtDNA multiple deletions such as POLG1, PEO1 (Twinkle) and SLC25A4 (ANT1) were ruled out. Our results show that certain OPA1 mutations exert a dominant negative effect responsible for multi-systemic disease, closely related to classical mitochondrial cytopathies, by a mechanism involving mtDNA instability.


Subject(s)
DNA, Mitochondrial/genetics , GTP Phosphohydrolases/genetics , Optic Atrophy, Autosomal Dominant/genetics , Adult , Aged , Base Sequence , Child , DNA Mutational Analysis/methods , Female , Fibroblasts/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/pathology , Models, Molecular , Muscle, Skeletal/chemistry , Muscle, Skeletal/ultrastructure , Mutation, Missense , Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/pathology , Optic Atrophy, Autosomal Dominant/pathology , Pedigree , Point Mutation , Syndrome , Tomography, X-Ray Computed
3.
Biosci Rep ; 27(1-3): 173-84, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17479363

ABSTRACT

Ocular involvement is a prevalent feature in mitochondrial diseases. Leber's hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA) are both non-syndromic optic neuropathies with a mitochondrial etiology. LHON is associated with point mutations in the mitochondrial DNA (mtDNA), which affect subunit genes of complex I. The majority of DOA patients harbor mutations in the nuclear-encoded protein OPA1, which is targeted to mitochondria and participates to cristae organization and mitochondrial network dynamics. In both disorders the retinal ganglion cells (RGCs) are specific cellular targets of the degenerative process. We here review the clinical features and the genetic bases, and delineate the possible common pathomechanism for both these disorders.


Subject(s)
Mitochondrial Diseases/pathology , Optic Atrophy, Autosomal Dominant/pathology , Optic Atrophy, Hereditary, Leber/pathology , Optic Nerve Diseases/pathology , Apoptosis/genetics , Apoptosis/physiology , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Models, Biological , Mutation , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/metabolism , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Nerve Diseases/genetics , Optic Nerve Diseases/metabolism
4.
Br J Haematol ; 120(6): 953-9, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12648064

ABSTRACT

The urokinase-type plasminogen activator (uPA) system, which consists of a proteinase (uPA), a receptor (uPAR or CD87) and inhibitors, is involved in proteolysis, cell migration, tissue remodelling, angiogenesis and cell adhesion. Recent findings suggest that malignant plasma cells express uPA and uPAR. The expression of these factors could represent a process by which myeloma plasma cells interact with the bone marrow (BM) environment and influence important biological events such as bone matrix degradation, plasma cell invasion and homing and, possibly, clinical evolution. We evaluated uPAR (CD87) and its soluble form (suPAR) in 49 multiple myeloma (MM) patients and correlated their expression and levels with clinico-biological characteristics of the disease. Flow cytometric analysis demonstrated that CD87 was expressed in all MM patients. High CD87 expression was associated with higher intensity of expression of CD56 (P = 0.038), CD38 (P = 0.058) and CD138 (P = 0.054) and CD45bright positivity (P = 0.014). suPAR levels correlated positively with soluble serum CD138 (P = 0.001), creatinine (P = 0.001), beta2-microglobulin (P < 0.001), disease stage (P = 0.017) and extra-BM involvement (P = 0.002). In the 46 evaluable patients, multivariate analysis showed that high levels of suPAR (P = 0.0214) and disease stage (P = 0.0064) were predictive of extra-BM involvement. In multivariate Cox analysis, 13q deletion (P = 0.0278), high soluble serum CD138 (P = 0.0201) and high suPAR (P = 0.0229) were the only parameters that independently affected survival. We conclude that CD87 is expressed on myeloma plasma cells and that suPAR, which predicts extra-BM involvement and poor prognosis, possibly represents a molecule with a relevant role in the biology of MM.


Subject(s)
Multiple Myeloma/immunology , Plasma Cells/immunology , Receptors, Cell Surface/analysis , beta 2-Microglobulin/analysis , ADP-ribosyl Cyclase/analysis , ADP-ribosyl Cyclase 1 , Aged , Antigens, CD/analysis , Biomarkers/analysis , CD56 Antigen/analysis , Case-Control Studies , Creatinine/analysis , Flow Cytometry , Humans , Male , Membrane Glycoproteins/analysis , Middle Aged , Multivariate Analysis , Neoplasm Staging , Prognosis , Proteoglycans/analysis , Receptors, Urokinase Plasminogen Activator , Syndecan-1 , Syndecans
SELECTION OF CITATIONS
SEARCH DETAIL
...