Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
BMC Genomics ; 24(1): 390, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430186

ABSTRACT

BACKGROUND: The mountain pine beetle, Dendroctonus ponderosae, is an irruptive bark beetle that causes extensive mortality to many pine species within the forests of western North America. Driven by climate change and wildfire suppression, a recent mountain pine beetle (MPB) outbreak has spread across more than 18 million hectares, including areas to the east of the Rocky Mountains that comprise populations and species of pines not previously affected. Despite its impacts, there are few tactics available to control MPB populations. Beauveria bassiana is an entomopathogenic fungus used as a biological agent in agriculture and forestry and has potential as a management tactic for the mountain pine beetle population. This work investigates the phenotypic and genomic variation between B. bassiana strains to identify optimal strains against a specific insect. RESULTS: Using comparative genome and transcriptome analyses of eight B. bassiana isolates, we have identified the genetic basis of virulence, which includes oosporein production. Genes unique to the more virulent strains included functions in biosynthesis of mycotoxins, membrane transporters, and transcription factors. Significant differential expression of genes related to virulence, transmembrane transport, and stress response was identified between the different strains, as well as up to nine-fold upregulation of genes involved in the biosynthesis of oosporein. Differential correlation analysis revealed transcription factors that may be involved in regulating oosporein production. CONCLUSION: This study provides a foundation for the selection and/or engineering of the most effective strain of B. bassiana for the biological control of mountain pine beetle and other insect pests populations.


Subject(s)
Beauveria , Coleoptera , Animals , Beauveria/genetics , Virulence/genetics , Genomics
3.
PLoS One ; 18(5): e0284393, 2023.
Article in English | MEDLINE | ID: mdl-37155652

ABSTRACT

Bark beetles (Coleoptera: Curculionidae; Scolytinae) are tree-infesting insects that consume subcortical tissues and fungi. Species capable of killing their host trees are most commonly associated with conifers, as very few bark beetle species infest and kill hardwood hosts directly. The alder bark beetle, Alniphagus aspericollis, is a hardwood-killing bark beetle that colonizes and kills red alder, Alnus rubra. Conifer-killing bark beetles have well-known associations with symbiotic ophiostomatoid fungi that facilitate their life histories, but it is unknown whether A. aspericollis has any fungal associates. This study was conducted to identify any consistent filamentous fungal associates of A. aspericollis and characterize the consistency of observed beetle-fungus relationships. Beetles and gallery phloem samples were collected from seven sites throughout the Greater Vancouver region in British Columbia, Canada. Filamentous fungi were isolated from these samples and identified by DNA barcoding using the internal transcribed spacer (ITS) region and other barcode regions for resolution to the species-level for the most dominant isolates. The most common fungal associate was a previously undescribed Neonectria major-like fungus, Neonectria sp. nov., which was isolated from ~67% of adult beetles, ~59% of phloem samples, and ~94% of the beetle-infested trees. Ophiostoma quercus was isolated from ~28% of adult beetles, ~9% of phloem samples, and ~56% of infested trees and deemed a casual associate of A. aspericollis, while a putatively novel species of Ophiostoma was more infrequently isolated from A. aspericollis and its galleries. Cadophora spadicis, a new record for red alder, was rarely isolated and is probably coincidentally carried by A. aspericollis. Overall, A. aspericollis was only loosely associated with ophiostomatoid fungi, suggesting that these fungi have little ecological significance in the beetle-tree interaction, while Neonectria sp. nov. may be a symbiote of A. aspericollis that is vectored by the beetle.


Subject(s)
Alnus , Coleoptera , Hypocreales , Tracheophyta , Weevils , Animals , Weevils/microbiology , Plant Bark/microbiology , British Columbia
4.
Appl Microbiol Biotechnol ; 107(10): 3341-3352, 2023 May.
Article in English | MEDLINE | ID: mdl-37017732

ABSTRACT

The mountain pine beetle (MPB) has infested over 16 million hectares of pine forests in western Canada, killing over 50% of mature lodgepole pine, Pinus contorta, in British Columbia alone. There are few tools available to manage irruptive bark beetle populations and to mitigate tree mortality. Beauveria bassiana is an entomopathogenic fungus that causes mortality to several bark beetle species. However, the potential for B. bassiana as a biocontrol agent against pine beetle populations is unknown. We selected three strains of B. bassiana from several culture collections and evaluated their conidial stability under cold storage, in planta (greenhouse, and pine bolts) and in natura (forest stand, pine bolts, and live pines) conditions. The stability assays showed that all fungal strains maintained a minimum effective conidial yield through the assay durations (3-12 weeks). In addition, we adapted a biphasic liquid-solid fermentation approach for the large-scale production of conidial biomass, yielding up to a 100-fold increase in production. In greenhouse virulence assays, the mean lethal time of MPBs was reduced to 3-4 days upon treatment with B. bassiana, where high B. bassiana-associated mycosis was also observed. Furthermore, the application of B. bassiana formulation substantially affected the gallery network of MPBs in bolts in the field, resulting in shorter larval galleries and significantly reduced offspring production. Indeed, high titer treatments reduced the mean larvae per gallery to virtually zero. Together these results demonstrate that B. bassiana may be a viable biocontrol tool to reduce mountain pine beetle populations in pine forests in western Canada. KEY POINTS: • Three B. bassiana strains identified to be stable at various test conditions. • Large-scale conidial biomass production using liquid-solid biphasic fermentation. • Reproductive success of D. ponderosae significantly reduced by B. bassiana formulation.


Subject(s)
Beauveria , Coleoptera , Pinus , Animals , Virulence , Pinus/microbiology , Forests , Larva , Spores, Fungal
5.
Oecologia ; 198(3): 681-698, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35226183

ABSTRACT

Irruptive forest insects such as bark beetles undergo intermittent outbreaks that cause landscape-scale tree mortality. Despite their enormous economic and ecological impacts, we still have only limited understanding of the dynamics by which populations transition from normally stable endemic to irruptive densities. We investigated density-dependent changes in mountain pine beetle reliance on stressed hosts, host selection, spatial configuration of attacks, and the interaction of host selection and spatial configuration by performing a complete census of lodgepole pine across six stands and 6 years. In addition, we compared the dynamics of mountain pine beetle with those of other bark beetles. We found that as population size increased, reliance on stressed trees decreased and new attacks shifted to larger trees with thicker phloem and higher growth rates that can support higher offspring production. Moreover, the spatial configuration of beetle-attacked trees shifted from random to spatially aggregated. Further, we found evidence that beetle utilization of larger trees was related to aggregation behavior as the size of tree attacked was positively correlated at 10-25 m, within the effective distance of pheromone-mediated signaling. In contrast, non-irruptive bark beetle species did not exhibit such density-dependent spatial aggregation at the stand scale or switches in host selection behavior. These results identify how density-dependent linkages between spatial configuration and host utilization can converge to drive population transitions from endemic to irruptive phases. Specifically, a combination of stand-level spatial aggregation, behavioral shifts, and higher quality of attainable hosts defines a critical threshold beyond which continual population growth becomes self-driving.


Subject(s)
Coleoptera , Pinus , Weevils , Animals , Disease Outbreaks , Plant Bark , Trees
6.
Appl Microbiol Biotechnol ; 105(6): 2541-2557, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33590267

ABSTRACT

The mountain pine beetle, Dendroctonus ponderosae, has infested over ~16 Mha of pine forests in British Columbia killing >50% of mature lodgepole pine, Pinus contorta, trees in affected stands. At present, it is functionally an invasive species in Alberta, killing and reproducing in evolutionarily naïve populations of lodgepole pine (P. contorta), novel jack pine (P. banksiana), and their hybrids. The entomopathogenic fungus Beauveria bassiana has shown some potential as a biocontrol agent of several bark beetle species. In this study, nine isolates of B. bassiana were examined for insect virulence characteristics, including conidiation rate, pigmentation, and infection rate in laboratory-reared D. ponderosae, to assess for their potential as biocontrol agents. The strains were categorized into three phenotypic groups based on pigmentation, conidial density, and myceliation rate. Virulence screening utilizing insect-based agar medium (D. ponderosae and European honeybee Apis mellifera carcasses) revealed no difference in selection of fungal growth. However, infection studies on D. ponderosae and A. mellifera showed contrasting results. In vivo A. mellifera infection model revealed ~5% mortality, representing the natural death rate of the hive population, whereas laboratory-reared D. ponderosae showed 100% mortality and mycosis. The LT50 (median lethal time 50) ranges from 2 to 5 ± 0.33 days, and LT100 ranges from 4 to 6 ± 0.5 days. We discuss the selective advantages of the three phenotypic groups in terms of virulence, pigmentation, conidial abundance, and tolerance to abiotic factors like UV and host tree monoterpenes. These results can further provide insights into the development of several phenotypically diverse B. bassiana strains in controlling the spread of the invasive D. ponderosae in Western Canada. KEY POINTS: • Three B. bassiana morphotype groups have been demonstrated to kill D. ponderosae. • A range of effective lethal times (LT50 and LT100) was established against D. ponderosae. • Variable tolerance to UV light and pine monoterpenes were observed in B. bassiana.


Subject(s)
Beauveria , Coleoptera , Pinus , Weevils , Animals , British Columbia
7.
Mol Ecol ; 26(7): 2077-2091, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28231417

ABSTRACT

Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Coleoptera/microbiology , Ophiostomatales/genetics , Symbiosis , Animals , DNA, Fungal/genetics , Ecosystem , Environment , Gene Frequency , Genetics, Population , Genomics , Phenotype , Polymorphism, Single Nucleotide
8.
PLoS One ; 12(2): e0172448, 2017.
Article in English | MEDLINE | ID: mdl-28207862

ABSTRACT

Eruptive forest insects are highly influential agents of change in forest ecosystems, and their effects have increased with recent climate change. State-dependent life histories contribute significantly to the population dynamics of eruptive forest insect herbivores; however, the proximate mechanisms by which these species shift between states is poorly understood. Laboratory bioassays were conducted using the mountain pine beetle (Dendroctonus ponderosae) to determine the effect of maternal host selection on offspring host preferences, as they apply to population state-dependent behaviors. Female mountain pine beetles exhibited state-dependent preference for artificial host material amended with monoterpenes in the absence of other cues, such that individuals reared in high-density epidemic-state simulations rejected low monoterpene conditions, while low-density endemic-state beetles accepted low monoterpene conditions. State-specific behavior in offspring was dependent on rearing conditions, as a function of maternal host selection, and these effects were observed within one generation. Density-dependent host selection behaviors exhibited by female mountain pine beetle offspring is reinforced by context-dependent maternal effects arising from parental host selection, and in situ exposure to conspecifics. These results demonstrate potential proximate mechanisms that control population dynamics in eruptive forest insects, and will allow for more accurate predictions of continued impact and spread of these species.


Subject(s)
Breeding , Coleoptera/physiology , Herbivory/physiology , Pinus/chemistry , Animals , Ecosystem , Female , Monoterpenes , Population Dynamics , South Africa
9.
PeerJ ; 2: e240, 2014.
Article in English | MEDLINE | ID: mdl-24688833

ABSTRACT

The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in this new host.

10.
Antonie Van Leeuwenhoek ; 100(2): 231-44, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21553309

ABSTRACT

Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada. Fungi were isolated from these beetles and identified using a combination of morphology and DNA sequence comparisons of five gene regions. In all four populations, Grosmannia aurea was the most common associate (74-100% of all beetles) followed closely by Ophiostoma abietinum (29-75%). Other fungi isolated, in order of their relative prevalence with individual beetles were an undescribed Leptographium sp. (0-13%), Ophiostoma ips (0-15%), Ophiostoma piliferum (0-11%), a Pesotum sp. (0-11%) and Ophiostoma floccosum (0-1%). Comparisons of the DNA sequences of Leptographium strains isolated in this study, with ex-type isolates of G. aurea, Grosmannia robusta, Leptographium longiclavatum, and Leptographium terebrantis, as well as with sequences from GenBank, revealed a novel lineage within the Grosmannia clavigera complex. This lineage included some of the D. murrayane isolates as well as several isolates from previous studies referred to as L. terebrantis. However, the monophyly of this lineage is not well supported and a more comprehensive study will be needed to resolve its taxonomic status as one or more novel taxa.


Subject(s)
Coleoptera/microbiology , Ophiostomatales/isolation & purification , Pinus/parasitology , Tubulin/genetics , Animals , Culture Media , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Genes, Fungal , Haplotypes , Ophiostomatales/classification , Ophiostomatales/genetics , Peptide Elongation Factor 1/genetics , Phylogeny , Sequence Analysis, DNA , Symbiosis
11.
Oecologia ; 136(1): 88-95, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12720084

ABSTRACT

Herbivory by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), an early season folivore of white spruce [ Picea glauca(Moench) Voss], has been associated with a shift in the timing of bud burst by its host during the subsequent year. We tested the hypothesis that a herbivory-induced shift in the phenology of bud development improves the window for colonisation of white spruce buds by Z. canadensis. Feeding on cortical tissue of elongating shoots caused the destruction of apical buds and an interruption of apical dominance in the year following herbivory. White spruce compensated for damage with the activation of dormant buds; mainly at proximal positions along shoots. As a result, half of all active buds on previously damaged branches were located immediately adjacent egg sites (i.e. previous year's bud scales), whereas <10% of active buds on intact shoots were situated there. More than 40% of newly emerged larvae colonised the basal buds of damaged shoots versus just 10% for intact shoots. Previous herbivory also influenced the initiation of bud burst. All buds flushed 2 days earlier on damaged shoots and date of bud burst was inversely correlated to bud density, indicating that short damaged shoots with large numbers of buds were stronger sinks for nutrients required for bud development. Egg hatch was best synchronized with early bursting buds on damaged branches. As a consequence, 89% of first-instar larvae successfully colonised buds on damaged branches while only 55% were successful on undamaged branches. Improved survival of larvae in the year following herbivory was a direct result of the evolved response by white spruce to the interruption of apical dominance. The pattern of herbivory by Z. canadensis may have evolved as a strategy to enhance the quality of white spruce for their offspring.


Subject(s)
Butterflies/physiology , Ecology , Feeding Behavior/physiology , Picea/physiology , Reproduction/physiology , Animal Nutritional Physiological Phenomena , Animals , Biological Evolution , Larva/physiology , New Brunswick
12.
Oecologia ; 93(2): 233-241, 1993 Mar.
Article in English | MEDLINE | ID: mdl-28313612

ABSTRACT

Females of Zeiraphera canadensis Mut. & Free., the spruce bud moth, were reared in the laboratory at constant and alternating temperatures, and in an outdoor insectary, to (1) determine the effects of temperature, age and size on several reproductive parameters and, (2) to test the hypothesis that body size-temperature interactions influence longevity and realized fecundity. Egg maturation was linearly related to age and large moths developed eggs at a higher rate than small ones. Mcan lifetime oviposition rate reached a maximum and remained stable at temperatures ≥20° C while the mean lifetime rate of egg maturation increased linearly with temperature, indicating that higher temperatures adversely affect oviposition. The production of nonviable eggs increased with age but also with temperature, suggesting high temperature (≥25° C) reduces egg quality and/or hinders fertilization. The realized fecundity and longevity of females reared under an alternating temperature regime (mean 20° C) was significantly less than that of females reared at constant 20° C. Similar realized fecundity, longevity and mean lifetime oviposition rates for females reared at temperatures alternating between 10 and 25° C (mean 20° C) and those at constant 25° C reflected the inability of females to recover from elevated diurnal temperatures. Longevity was positively related to female body size at constant 15 and 20° C but the relationships were negative for moths exposed to diurnal temperatures equal to or exceeding 25° C. Due to the reduced longevity of large moths at high temperatures, linear regressions between size and realized fecundity were only significant at constant temperatures ≤20° C. At higher temperatures, the size-fecundity relationship became curvilinear as a result of the diminished reproductive output of large individuals. Reduced fecundity and longevity of large females at high temperatures may have been due to elevated internal temperatures of large-bodied moths. Large females in a controlled-environment chamber maintained at 25° C developed an internal temperature excess (i.e. temperature above ambient) of nearly 2° C while small-bodied females exceeded ambient by only 0.3° C. However, when held at 20° C, the temperature excess of large-bodied moths was much less than 1° C and small-bodied females did not differ from ambient. Such interactions between temperature and body size suggest that there should be stabilizing selection toward moderate-sized individuals and may explain the absence of size-related effects on fecundity and longevity previously reported for several other lepidopterans.

SELECTION OF CITATIONS
SEARCH DETAIL
...