Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Ther Adv Rare Dis ; 5: 26330040241249189, 2024.
Article in English | MEDLINE | ID: mdl-38716233

ABSTRACT

Dentatorubral-pallidoluysian atrophy (DRPLA) is an ultra-rare neurodegenerative disorder characterized by ataxia, cognitive decline, myoclonus, chorea, epilepsy, and psychiatric manifestations. This article delves into the multifaceted efforts of CureDRPLA, a family-driven non-profit organization, in advancing research, raising awareness, and developing therapeutic strategies for this complex condition. CureDRPLA's inception in 2019 led to the establishment of the DRPLA Research Program, and since then have funded research projects to advance the understanding of DRPLA including but not limited to human cellular and mouse models, a natural history and biomarkers study, and a patient registry. There are currently no disease-modifying treatments for DRPLA, motivating a concerted effort on behalf of CureDRPLA to hasten their development by funding and coordinating preclinical studies of therapies in multiple modalities. Of particular interest are therapies focused on lowering the expression (or downregulation) of ATN1, the mutant gene that causes DRPLA, in hopes of tackling the pathology at its root. As with many ultra-rare diseases, a key challenge in DRPLA remains the complexity of coordinating both basic and clinical research efforts across multiple sites around the world. Finally, despite the generous financial support provided by CureDRPLA, more funding and collective efforts are still required to advance research toward the clinic and develop effective treatments for individuals with DRPLA.


Funding research projects and activities to advance research towards treatments for dentatorubral-pallidoluysian atrophy (DRPLA) This article describes the journey of CureDRPLA, a family-driven non-profit organization dedicated to making strides against dentatorubral-pallidoluysian atrophy (DRPLA), an ultra-rare brain disorder. It describes CureDRPLA's tireless efforts to understand, treat, and raise awareness about DRPLA, a condition marked by movement difficulties (ataxia), intellectual disability, uncontrollable jerky movements (myoclonus), involuntary or irregular muscle movements (chorea) and seizures. This disorder is caused by a mutation in a gene called ATN1. The gene produces a protein called atrophin-1, and when the DRPLA-causing mutation is present, the protein becomes abnormal and can build up in the brain, affecting its normal functions. Since its founding in 2019, CureDRPLA has funded research projects to unravel the mysteries of the disease and provide support for affected individuals. CureDRPLA has funded projects to create models of DRPLA using human cells and mice, which helps scientists study the disease and test potential treatments. We have started a study to learn more about how DRPLA progresses in people and are building a global database of information from individuals with DRPLA. Due to the absence of a treatment or cure, CureDRPLA is focused on testing treatments. We are particularly interested in exploring different approaches to lower the levels of the abnormal protein in the brain. CureDRPLA is actively involving the DRPLA community worldwide, raising awareness through events, conferences, and social media. We aim to connect with medical professionals, researchers, and affected families to build a strong community focused on understanding and managing DRPLA. In summary, CureDRPLA is working hard to better understand DRPLA, support affected families, and accelerate the development of treatments for this challenging condition. Our collaborative efforts and dedication underscore the importance of a united global approach to address the complexities of DRPLA.

2.
Ther Adv Rare Dis ; 5: 26330040241252447, 2024.
Article in English | MEDLINE | ID: mdl-38778874

ABSTRACT

Background: Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare, neurodegenerative disorder with no disease-modifying treatments. There is a dearth of information in the literature about the patient and caregiver experience living with DRPLA. Objectives: This study aimed to (1) understand symptoms experienced by adult- and juvenile-onset DRPLA populations and their impact on daily life and (2) explore patient and caregiver treatment goals and clinical trial participation preferences. Design: The study was a qualitative interview study. Methods: Interviews were conducted remotely with adult patients with DRPLA and caregivers. Participants described patient symptoms and the impact of those symptoms on daily life, and they discussed treatment goals and potential clinical trial participation. There were 18 patients described in the interviews with two patients and seven caregivers. Some participants were caregivers to multiple patients with DRPLA. Results: Interview transcripts were coded for themes, and reported symptoms were summarized with descriptive statistics. Adult-onset patients (N = 7) experienced difficulty with ataxia (100%), cognition (100%), fine motor skills (100%), gross motor skills (100%), speech (100%), personality changes (100%), and seizures (57%). Juvenile-onset patients (N = 11) experienced difficulty with ataxia (100%), sleep (100%), speech (100%), jerking/twitching (83%), behavior (82%), cognition (82%), fine motor skills (82%), gross motor skills (82%), sensory sensitivity (75%), and seizures (64%). When considering aspects of DRPLA to target for future treatment, patients prioritized ataxia/mobility (100%), juvenile-onset caregivers prioritized ataxia/mobility (60%) and independence (60%), and adult-onset caregivers prioritized personality (60%). Almost all patients (93%) would participate in a clinical trial if given the opportunity, but travel to a clinical site could pose a participation barrier for half. Conclusion: This study found that there are symptom domains that are relevant across the DRPLA population, but there is heterogeneity within each domain based on the age of symptom onset and disease stage, which has implications for clinical trial design.


Understanding dentatorubral-pallidoluysian atrophy (DRPLA) symptoms and impacts on daily life through interviews with patients and caregivers Why was the study done? Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare and progressive brain disorder. Little is known about the patient and caregiver experience living with DRPLA and this lack of information has hindered the development of patient-focused treatments and the measurement of outcomes that are most meaningful to caregivers and patients. What did the researchers do? To address this problem, researchers conducted interviews with patients and caregivers of DRPLA to (1) better understand symptoms experienced by adult- and juvenile-onset DRPLA populations and their impact on daily life and (2) explore patient and caregiver treatment goals and clinical trial participation preferences. What did the researchers find? Eighteen patients were described in the interviews. Adult-onset patients (onset at age 20 or older) experienced difficulty with coordination, cognition, motor skills, speech, personality changes, and seizures. Juvenile-onset patients (onset before age 20) experienced difficulty with coordination, sleep, speech, jerking/twitching, behavior, cognition, motor skills, sensory sensitivity, and seizures. When considering symptoms to prioritize for future treatment, patients and caregivers identified coordination/mobility, independence, and personality as important. Nearly all participants indicated they would participate in a clinical trial if given an opportunity, however half expressed that travel to a clinical site could pose a barrier. What do the findings mean? This study provides a better understanding of the symptoms experienced by DRPLA patients and their impact on daily life. Additionally, it identifies important targets for treatment and considerations when designing clinical trials for DRPLA such as the barrier caused by travel to a clinical site.

3.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37684045

ABSTRACT

Huntington's disease arises from a toxic gain of function in the huntingtin (HTT) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological, and plasma metabolite levels. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic ß-catenin function.


Subject(s)
Hepatocytes , Liver , Animals , Mice , Acetaminophen , Phenotype
4.
bioRxiv ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37425835

ABSTRACT

Huntington's disease arises from a toxic gain of function in the huntingtin ( HTT ) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological and plasma metabolite level. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic ß-catenin function.

6.
Dis Model Mech ; 15(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35403689

ABSTRACT

Repeat expansion diseases are a large group of human genetic disorders caused by expansion of a specific short tandem repeat tract. Expansion in somatic cells affects age of onset and disease severity in some of these disorders. However, alleles in DNA derived from blood, a commonly used source of DNA, usually show much less expansion than disease-relevant cells in the central nervous system in both humans and mouse models. Here we examined the extent of expansion in different DNA sources from mouse models of the fragile X-related disorders, Huntington's disease, spinocerebellar ataxia type 1 and spinocerebellar ataxia type 2. We found that DNA isolated from stool is a much better indicator of somatic expansion than DNA from blood. As stool is a sensitive and noninvasive source of DNA, it can be useful for studies of factors affecting the risk of expansion, or the monitoring of treatments aimed at reducing expansion in preclinical trials, as it would allow expansions to be examined longitudinally in the same animal and allow significant changes in expansion to be observed much earlier than is possible with other DNA sources.


Subject(s)
Huntington Disease , Spinocerebellar Ataxias , Animals , Central Nervous System , DNA , Disease Models, Animal , Huntington Disease/genetics , Mice , Trinucleotide Repeat Expansion/genetics
7.
Cell Syst ; 13(4): 304-320.e5, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35148841

ABSTRACT

Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Corpus Striatum , Disease Models, Animal , Drosophila/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Mice , Neurodegenerative Diseases/metabolism
8.
Commun Biol ; 4(1): 1374, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880419

ABSTRACT

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


Subject(s)
Exons , Huntingtin Protein/genetics , Huntington Disease/genetics , Nuclear Proteins/genetics , Peptides/metabolism , Cryoelectron Microscopy , Humans , Huntingtin Protein/metabolism , Huntingtin Protein/ultrastructure , Nuclear Proteins/metabolism , Nuclear Proteins/ultrastructure
9.
J Neurosci ; 41(25): 5534-5552, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34011527

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon 1 of the huntingtin (HTT) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-specific disease processes, we studied the nuclear transcriptomes of 4524 cells from the striatum of a genetically precise knock-in mouse model of the HD mutation, HttQ175/+, and from wild-type controls. We used 14- to 15-month-old male mice, a time point at which multiple behavioral, neuroanatomical, and neurophysiological changes are present but at which there is no known cell death. Thousands of differentially expressed genes (DEGs) were distributed across most striatal cell types, including transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell type-specific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types. Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the polycomb repressive complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity across virtually all cell types in the adult striatum.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by specific loss of medium spiny neurons (MSNs) in the striatum, accompanied by more subtle changes in many other cell types. It is thought that changes in transcriptional regulation are an important underlying mechanism, but cell type-specific gene expression changes are not well understood, particularly at time points relevant to the onset of disease-related symptoms. Single-nucleus (sn)RNA-seq in a genetically precise mouse model enabled us to identify novel patterns of transcriptional dysregulation because of HD mutations, including bidirectional dysregulation of many cell type identity genes that may be driven by partial loss-of-function of the polycomb repressive complex (PRC). Identifying these regulators of transcriptional dysregulation in HD can be leveraged to design novel disease-modifying therapeutics.


Subject(s)
Corpus Striatum/pathology , Huntington Disease/pathology , Neurons/pathology , Polycomb Repressive Complex 2/metabolism , Animals , Corpus Striatum/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation , Neurons/metabolism , RNA-Seq
10.
Nucleic Acids Res ; 48(19): 10615-10631, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32776089

ABSTRACT

Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.


Subject(s)
Oligonucleotides, Antisense/therapeutic use , Prion Diseases/therapy , Prion Proteins/genetics , RNAi Therapeutics/methods , Animals , Brain/metabolism , Brain/pathology , Cell Line , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/chemistry , Prion Proteins/metabolism
11.
JCI Insight ; 52019 07 30.
Article in English | MEDLINE | ID: mdl-31361599

ABSTRACT

Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrP; PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering one target mRNA in the brain, but their development for prion disease has been hindered by three unresolved questions from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here we test antisense oligonucleotides (ASOs) delivered by bolus intracerebroventricular injection to intracerebrally prion-infected wild-type mice. Prophylactic treatments given every 2-3 months extended survival times 61-98%, and a single injection at 120 days post-infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a non-targeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent, or even single, bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease.


Subject(s)
Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Prion Diseases/drug therapy , Animals , Brain/pathology , Disease Models, Animal , Drug Discovery , Female , Genetic Therapy , Mice , Mice, Inbred C57BL , Prion Diseases/pathology , Survival Rate
12.
Mol Syst Biol ; 14(3): e7435, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581148

ABSTRACT

Transcriptional changes occur presymptomatically and throughout Huntington's disease (HD), motivating the study of transcriptional regulatory networks (TRNs) in HD We reconstructed a genome-scale model for the target genes of 718 transcription factors (TFs) in the mouse striatum by integrating a model of genomic binding sites with transcriptome profiling of striatal tissue from HD mouse models. We identified 48 differentially expressed TF-target gene modules associated with age- and CAG repeat length-dependent gene expression changes in Htt CAG knock-in mouse striatum and replicated many of these associations in independent transcriptomic and proteomic datasets. Thirteen of 48 of these predicted TF-target gene modules were also differentially expressed in striatal tissue from human disease. We experimentally validated a specific model prediction that SMAD3 regulates HD-related gene expression changes using chromatin immunoprecipitation and deep sequencing (ChIP-seq) of mouse striatum. We found CAG repeat length-dependent changes in the genomic occupancy of SMAD3 and confirmed our model's prediction that many SMAD3 target genes are downregulated early in HD.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Huntington Disease/genetics , Smad3 Protein/genetics , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , Huntington Disease/metabolism , Mice , Protein Interaction Maps , Proteomics , Smad3 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Huntingtons Dis ; 7(1): 17-33, 2018.
Article in English | MEDLINE | ID: mdl-29480209

ABSTRACT

BACKGROUND: Successful disease-modifying therapy for Huntington's disease (HD) will require therapeutic intervention early in the pathogenic process. Achieving this goal requires identifying phenotypes that are proximal to the HTT CAG repeat expansion. OBJECTIVE: To use Htt CAG knock-in mice, precise genetic replicas of the HTT mutation in patients, as models to study proximal disease events. METHODS: Using cohorts of B6J.HttQ111/+ mice from 2 to 18 months of age, we analyzed pathological markers, including immunohistochemistry, brain regional volumes and cortical thickness, CAG instability, electron microscopy of striatal synapses, and acute slice electrophysiology to record glutamatergic transmission at striatal synapses. We also incorporated a diet perturbation paradigm for some of these analyses. RESULTS: B6J.HttQ111/+ mice did not exhibit significant neurodegeneration or gliosis but revealed decreased striatal DARPP-32 as well as subtle but regional-specific changes in brain volumes and cortical thickness that parallel those in HD patients. Ultrastructural analyses of the striatum showed reduced synapse density, increased postsynaptic density thickness and increased synaptic cleft width. Acute slice electrophysiology showed alterations in spontaneous AMPA receptor-mediated postsynaptic currents, evoked NMDA receptor-mediated excitatory postsynaptic currents, and elevated extrasynaptic NMDA currents. Diet influenced cortical thickness, but did not impact somatic CAG expansion, nor did it show any significant interaction with genotype on immunohistochemical, brain volume or cortical thickness measures. CONCLUSIONS: These data show that a single HttQ111 allele is sufficient to elicit brain region-specific morphological changes and early neuronal dysfunction, highlighting an insidious disease process already apparent in the first few months of life.


Subject(s)
Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntington Disease/genetics , Synapses/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Gene Knock-In Techniques/methods , Mice, Inbred C57BL , Mice, Knockout , Neostriatum/metabolism , Neurons/metabolism , Synapses/genetics
14.
Sci Rep ; 8(1): 2304, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396492

ABSTRACT

Apathy is one of the most prevalent and progressive psychiatric symptoms in Huntington's disease (HD) patients. However, preclinical work in HD mouse models tends to focus on molecular and motor, rather than affective, phenotypes. Measuring behavior in mice often produces noisy data and requires large cohorts to detect phenotypic rescue with appropriate power. The operant equipment necessary for measuring affective phenotypes is typically expensive, proprietary to commercial entities, and bulky which can render adequately sized mouse cohorts as cost-prohibitive. Thus, we describe here a home-built, open-source alternative to commercial hardware that is reliable, scalable, and reproducible. Using off-the-shelf hardware, we adapted and built several of the rodent operant buckets (ROBucket) to test HttQ111/+ mice for attention deficits in fixed ratio (FR) and progressive ratio (PR) tasks. We find that, despite normal performance in reward attainment in the FR task, HttQ111/+ mice exhibit reduced PR performance at 9-11 months of age, suggesting motivational deficits. We replicated this in two independent cohorts, demonstrating the reliability and utility of both the apathetic phenotype, and these ROBuckets, for preclinical HD studies.


Subject(s)
Apathy , Huntington Disease/complications , Animals , Disease Models, Animal , Gene Knock-In Techniques , Huntingtin Protein/genetics , Mental Disorders , Mice , Phenotype
15.
PLoS One ; 12(4): e0175968, 2017.
Article in English | MEDLINE | ID: mdl-28453524

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease whose predominant neuropathological signature is the selective loss of medium spiny neurons in the striatum. Despite this selective neuropathology, the mutant protein (huntingtin) is found in virtually every cell so far studied, and, consequently, phenotypes are observed in a wide range of organ systems both inside and outside the central nervous system. We, and others, have suggested that peripheral dysfunction could contribute to the rate of progression of striatal phenotypes of HD. To test this hypothesis, we lowered levels of huntingtin by treating mice with antisense oligonucleotides (ASOs) targeting the murine Huntingtin gene. To study the relationship between peripheral huntingtin levels and striatal HD phenotypes, we utilized a knock-in model of the human HD mutation (the B6.HttQ111/+ mouse). We treated mice with ASOs from 2-10 months of age, a time period over which significant HD-relevant signs progressively develop in the brains of HttQ111/+ mice. Peripheral treatment with ASOs led to persistent reduction of huntingtin protein in peripheral organs, including liver (64% knockdown), brown adipose (66% knockdown), and white adipose tissues (71% knockdown). This reduction was not associated with alterations in the severity of HD-relevant signs in the striatum of HttQ111/+ mice at the end of the study, including transcriptional dysregulation, the accumulation of neuronal intranuclear inclusions, and behavioral changes such as subtle hypoactivity and reduced exploratory drive. These results suggest that the amount of peripheral reduction achieved in the current study does not significantly impact the progression of HD-relevant signs in the central nervous system.


Subject(s)
Brain/metabolism , Gene Silencing , Huntingtin Protein/deficiency , Huntingtin Protein/genetics , Huntington Disease/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Disease Progression , Huntington Disease/metabolism , Huntington Disease/pathology , Liver/metabolism , Mice , Phenotype
16.
Hum Mol Genet ; 26(5): 913-922, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28334820

ABSTRACT

Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+ mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis.


Subject(s)
Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntington Disease/genetics , Trinucleotide Repeat Expansion/genetics , Animals , Corpus Striatum/pathology , Disease Models, Animal , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Genetic Background , Genomic Instability/genetics , Humans , Huntingtin Protein/biosynthesis , Huntington Disease/pathology , Mice , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Phenotype , Transcriptome/genetics
18.
Sci Rep ; 7: 41570, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176805

ABSTRACT

We investigated the appearance and progression of disease-relevant signs in the B6.HttQ111/+ mouse, a genetically precise model of the mutation that causes Huntington's disease (HD). We find that B6.HttQ111/+ mice are healthy, show no overt signs of central or peripheral inflammation, and no gross motor impairment as late as 12 months of age. Behaviorally, we find that 4-9 month old B6.HttQ111/+ mice have normal activity levels and show no clear signs of anxiety or depression, but do show clear signs of reduced motivation. The neuronal density, neuronal size, synaptic density and number of glia is normal in B6.HttQ111/+ striatum, the most vulnerable brain region in HD, up to 12 months of age. Despite this preservation of the synaptic and cellular composition of the striatum, we observe clear progressive, striatal-specific transcriptional dysregulation and accumulation of neuronal intranuclear inclusions (NIIs). Simulation studies suggest these molecular endpoints are sufficiently robust for future preclinical studies, and that B6.HttQ111/+ mice are a useful tool for modeling disease-modifying or neuroprotective strategies for disease processes before the onset of overt phenotypes.

19.
Lancet Neurol ; 14(11): 1135-42, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26466780

ABSTRACT

Huntington's disease is a genetic neurodegenerative disorder with symptoms that are linked to the progressive dysfunction and neuronal death in corticostriatal circuits. The causative gene (mutated HTT) is widely expressed outside the CNS and several peripheral signs of disease, including weight loss and increased proinflammatory signalling, are often seen; however, their importance in the pathophysiology of Huntington's disease is not clear. Studies in animals have shown that features of the disease involving the CNS, including synapse loss and behavioural alterations, are susceptible to modulation by treatments that target tissues and organs outside the CNS. Links between peripheral biology and neurodegeneration have also been shown in other chronic neurodegenerative diseases, suggesting that modulation of these peripheral targets can offer new approaches to therapeutic development. Treatments targeted to tissues and organs outside the CNS might therefore substantially improve the quality of life of patients with Huntington's disease, even in the absence of disease-modifying effects.


Subject(s)
Central Nervous System/pathology , Huntington Disease/pathology , Huntington Disease/therapy , Blood , Humans , Huntingtin Protein , Huntington Disease/genetics , Liver/pathology , Muscles/pathology , Nerve Tissue Proteins/genetics , Peripheral Nerves/pathology
20.
PLoS One ; 10(8): e0134465, 2015.
Article in English | MEDLINE | ID: mdl-26295712

ABSTRACT

The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident in brain, where the striatum featured signature accumulation of a set of lipids including sphingomyelin, phosphatidylcholine, cholesterol ester and triglyceride species. Importantly, in the presence of the CAG mutation, metabolite changes were unmasked in peripheral tissues by an interaction with dietary fat, implying that the design of studies to discover metabolic changes in HD mutation carriers should include metabolic perturbations.


Subject(s)
Corpus Striatum/metabolism , Diet, High-Fat , Huntington Disease/metabolism , Metabolome , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Trinucleotide Repeat Expansion , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Alleles , Animals , Cerebellum/metabolism , Cerebellum/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Corpus Striatum/pathology , Disease Models, Animal , Gene Expression , Heterozygote , Humans , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/pathology , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Machine Learning , Mice , Mice, Transgenic , Mutation , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/pathology , Nuclear Proteins/genetics , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...