Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Strength Cond Res ; 38(4): 648-655, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38241478

ABSTRACT

ABSTRACT: Chae, S, Long, SA, Lis, RP, McDowell, KW, Wagle, JP, Carroll, KM, Mizuguchi, S, and Stone, MH. Combined accentuated eccentric loading and rest redistribution in high-volume back squat: Acute stimulus and fatigue. J Strength Cond Res 38(4): 648-655, 2024-The purpose of this study was to examine acute stimulus and fatigue responses to combined accentuated eccentric loading and rest redistribution (AEL + RR). Resistance-trained men ( n = 12, 25.6 ± 4.4 years, 1.77 ± 0.06 m, and 81.7 ± 11.4 kg) completed a back squat (BS) 1 repetition maximum (1RM) and weight releaser familiarization session. Three BS exercise conditions (sets × repetitions × eccentric-concentric loading) consisted of (a) 3 × (5 × 2) × 110/60% (AEL + RR 5), (b) 3 × (2 × 5) × 110/60% (AEL + RR 2), and (c) 3 × 10 × 60/60% 1RM (traditional sets [TS]). Weight releasers (50% 1RM) were attached to every first repetition of each cluster set (every first, third, fifth, seventh, and ninth repetition in AEL + RR 5 and every first and sixth repetition in AEL + RR 2). The AEL + RR 5 resulted in greater total volume load (sets × repetitions × eccentric + concentric loading) (6,630 ± 1,210 kg) when compared with AEL + RR 2 (5,944 ± 1,085 kg) and TS (5,487 ± 1,002 kg). In addition, AEL + RR 5 led to significantly ( p < 0.05) greater rating of perceived exertion (RPE) after set 2 and set 3 and lower blood lactate (BL) after set 3 and 5, 15, and 25 minutes postexercise than AEL + RR 2 and TS. There was a main effect of condition for BL between AEL + RR 5 (5.11 ± 2.90 mmol·L -1 ), AEL + RR 2 (6.23 ± 3.22 mmol·L -1 ), and TS (6.15 ± 3.17 mmol·L -1 ). In summary, AEL + RR 5 results in unique stimulus and fatigue responses. Although it may increase perceived exertion, coaches could use AEL + RR 5 to achieve greater back squat total volume load while reducing BL accumulation.


Subject(s)
Muscle, Skeletal , Resistance Training , Male , Humans , Muscle, Skeletal/physiology , Resistance Training/methods , Exercise/physiology , Exercise Therapy , Rest/physiology , Muscle Strength/physiology
2.
J Strength Cond Res ; 38(4): 640-647, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38090980

ABSTRACT

ABSTRACT: Chae, S, Long, SA, Lis, RP, McDowell, KW, Wagle, JP, Carroll, KM, Mizuguchi, S, and Stone, MH. Combined accentuated eccentric loading and rest redistribution in high-volume back squat: Acute kinetics and kinematics. J Strength Cond Res 38(4): 640-647, 2024-The purpose of this study was to explore acute kinetic and kinematic responses to combined accentuated eccentric loading and rest redistribution (AEL + RR). Resistance-trained men ( n = 12, 25.6 ± 4.4 years, 1.77 ± 0.06 m, and 81.7 ± 11.4 kg) completed a back squat (BS) 1 repetition maximum (1RM) and weight releaser familiarization session. Three BS exercise conditions (sets × repetitions × eccentric/concentric loading) consisted of (a) 3 × (5 × 2) × 110/60% (AEL + RR 5), (b) 3 × (2 × 5) × 110/60% (AEL + RR 2), and (c) 3 × 10 × 60/60% 1RM (traditional sets [TS]). Weight releasers (50% 1RM) were attached to every first repetition of each cluster set (every first, third, fifth, seventh, and ninth repetition in AEL + RR 5 and every first and sixth repetition in AEL + RR 2). The AEL + RR 5 resulted in significantly ( p < 0.05) greater concentric peak velocity (PV) (1.18 ± 0.17 m·s -1 ) and peak power (PP) (2,304 ± 499 W) compared with AEL + RR 2 (1.11 ± 0.19 m·s -1 and 2,148 ± 512 W) and TS (1.10 ± 0.14 m·s -1 and 2,079 ± 388 W). Furthermore, AEL + RR 5 resulted in significantly greater PV and PP across all 10 repetitions compared with TS. Although AEL + RR 5 resulted in significantly greater concentric mean force (MF) (1,706 ± 224 N) compared with AEL + RR 2 (1,697 ± 209 N) and TS (1,685 ± 211 N), no condition by set or repetition interactions existed. In conclusion, AEL + RR 5 increases PV and PP but has little effect on MF. Coaches might consider prescribing AEL + RR 5 to increase especially peak aspects of velocity and power outcomes.


Subject(s)
Muscle Strength , Resistance Training , Male , Humans , Muscle Strength/physiology , Biomechanical Phenomena , Resistance Training/methods , Exercise/physiology , Kinetics , Rest , Muscle, Skeletal/physiology
3.
J Strength Cond Res ; 37(12): 625-632, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37639652

ABSTRACT

ABSTRACT: Burke, BI, Carroll, KM, Travis, SK, Stone, ME, and Stone, MH. Two days versus four days of training cessation following a step-taper in powerlifters. J Strength Cond Res 37(12): e625-e632, 2023-Tapering and training cessation are methods of training load management aimed at optimizing athlete preparedness leading into competition. Such practices are often used by strength sport athletes such as powerlifters (i.e., athletes who compete in the back squat [BS], bench press [BP], and deadlift [DL]). The purpose of this study was to compare the differences in maximal strength, subjective recovery and stress state, and body composition alterations in strength athletes undergoing a 1-week step-taper followed by either a 2-day (2D) or 4-day (4D) period of training cessation. Twelve powerlifters (22.3 ± 2.1 yrs; 92.1 ± 20.4 kg; 174.8 ± 7.5 cm) completed a 6-week training protocol aimed at peaking 1 repetition maximum (1RM) strength on BS, BP, and DL. Body composition, subjective recovery and stress state, and 1RM on BS, BP, and DL were assessed before an overreach week (T1) and after the periods of training cessation (T2) for each group. Alpha criterion was set at p ≤ 0.05. There were significant increases in BP ( p = 0.032, g = 0.10), powerlifting total ( p = 0.014, g = 0.11), and DOTS score ( p = 0.006, g = 0.12) after 2D of cessation. However, after 4D of cessation, significant increases were only observed in DL ( p = 0.019, g = 0.11) along with significant decreases in BP ( p = 0.003, g = -0.13). There were no statistically significant changes in any other variable for either group indicating that BS, psychometric, and body composition data were maintained between T1 and T2. The results of this study support the use of 1-week step-tapers, followed by a short period of training cessation (2-4D) to maintain or improve maximal strength performance.


Subject(s)
Resistance Training , Weight Lifting , Humans , Resistance Training/methods , Muscle Strength , Athletes , Exercise Therapy
4.
J Strength Cond Res ; 36(7): 1819-1825, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-33044370

ABSTRACT

ABSTRACT: Suarez, DG, Carroll, KM, Slaton, JA, Rochau, KG, Davis, MW, and Stone, MH. Utility of a shortened isometric midthigh pull protocol for assessing rapid force production in athletes. J Strength Cond Res 36(7): 1819-1825, 2022-The purpose of this investigation was to determine the magnitude of difference, reliability, and relationship to performance of a shortened isometric midthigh pull (IMTP) protocol. Fourteen strength-trained men (age: 26.8 ± 5.0 years, height: 176.3 ± 6.9 cm, body mass: 86.8 ± 13.9 kg, and training age: 8.5 ± 6.9 years) performed 1-second (SHORT) and traditional (TRAD) IMTP protocols during consecutive weeks. Peak force (PF), instantaneous force (90 & 200 ms), rate of force development (RFD) (0-90 ms & 0-200 ms), and impulse (0-90 ms & 0-200 ms) from each protocol were collected. Paired samples t test and Hedge's g were calculated to determine the magnitude of difference in each variable between protocols. Within-session and between-session reliability was assessed with intraclass correlation coefficient, coefficient of variation, and 95% confidence intervals. Static jumps were performed to compare relationships of the IMTP variables from each protocol with jumping performance. There was no statistically significant (p > 0.05) difference in PF between the protocols (p = 0.345; g = -0.07). All early force-time variables were significantly higher in the SHORT protocol (p = <0.001-0.018; g = 0.38-0.79). The SHORT protocol resulted in more reliable RFD measures within-session. Correlations with jumping performance were mostly similar between protocols (r = 0.253-0.660). The SHORT IMTP protocol resulted in comparable PF values and considerably higher early force-time characteristics despite a restrained time to produce force and shorter rest. The SHORT protocol allows for an accurate assessment of rapid force-generating abilities while necessitating shorter collection periods than typical IMTP protocols.


Subject(s)
Isometric Contraction , Muscle Strength , Adolescent , Adult , Athletes , Child , Child, Preschool , Exercise Test/methods , Humans , Infant , Male , Muscle, Skeletal , Reproducibility of Results , Thigh , Young Adult
5.
Article in English | MEDLINE | ID: mdl-33946754

ABSTRACT

The block periodization training paradigm has been shown to produce enhanced gains in strength and power. The purpose of this study is to assess resistance training induced alterations in lean body mass and cross-sectional area using a block periodization training model among individuals (n = 15) of three differing strength levels (high, moderate and low) based on one repetition maximum back squat relative to body weight. A 3 × 5 mixed-design ANOVA was used to examine within-and between-subject changes in cross-sectional area (CSA), lean body mass (LBM), lean body mass adjusted (LBMadjusted) and total body water (TBW) over an 11-week resistance training program. LBMadjusted is total body water subtracted from lean body mass. The ANOVA revealed no statistically significant between-group differences in any independent variable (p > 0.05). Within-group effects showed statistically significant increases in cross-sectional area (p < 0.001), lean body mass (p < 0.001), lean body mass adjusted (p ˂ 0.001) and total body water (p < 0.001) from baseline to post intervention: CSA: 32.7 cm2 ± 8.6; 36.3 cm2 ± 7.2, LBM: 68.0 kg ± 9.5; 70.6 kg ± 9.4, LBMadjusted: 20.4 kg ± 3.1; 21.0 kg ± 3.3 and TBW: 49.8 kg ± 6.9; 51.7 kg ± 6.9. In conclusion, the results of this study suggest subjects experienced an increase in both lean body mass and total body water, regardless of strength level, over the course of the 11-week block periodized program. Gains in lean body mass and cross-sectional area may be due to edema at the early onset of training.


Subject(s)
Resistance Training , Body Composition , Humans , Infant , Male , Muscle Strength , Muscle, Skeletal , Muscles , Posture
6.
J Strength Cond Res ; 35(2): 420-427, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-29927889

ABSTRACT

ABSTRACT: Wagle, JP, Cunanan, AJ, Carroll, KM, Sams, ML, Wetmore, A, Bingham, GE, Taber, CB, DeWeese, BH, Sato, K, Stuart, CA, and Stone, MH. Accentuated eccentric loading and cluster set configurations in the back squat: a kinetic and kinematic analysis. J Strength Cond Res 35(2): 420-427, 2021-This study examined the kinetic and kinematic differences between accentuated eccentric loading (AEL) and cluster sets in trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, and back squat to body mass ratio = 1.8 ± 0.3). Four load condition sessions consisted of traditionally loaded (TL) "straight sets," TL cluster (TLC) sets, AEL cluster (AEC) sets, and AEL "straight sets" where only the first repetition had eccentric overload (AEL1). An interrepetition rest interval of 30 seconds was prescribed for both TLC and AEC. Concentric intensity for all load conditions was 80% 1 repetition maximum (1RM). Accentuated eccentric loading was applied to repetitions using weight releasers with total eccentric load equivalent to 105% of concentric 1RM. Traditionally loaded cluster had statistically greater concentric outputs than TL. Furthermore, statistically greater eccentric and concentric outputs were observed during AEC compared with TL with the exception of peak power. Statistically greater concentric characteristics were observed in TLC compared with AEL1, but statistically greater eccentric outputs were observed in AEL1. In the 2 cluster set conditions, statistically greater concentric rate of force development (RFDCON) (d = 0.470, p < 0.001) and average velocity (vavg) (d = 0.560, p < 0.001) in TLC compared with AEC were observed. However, statistically greater eccentric work (WECC) (d = 2.096, p < 0.001) and eccentric RFD (RFDECC) (d = 0.424, p < 0.001) were observed in AEC compared with TLC. Overall, eccentric overload demonstrated efficacy as a means of increasing eccentric work and RFD, but not as a means of potentiating concentric output. Finally, interrepetition rest seems to have the largest influence on concentric power output and RFD.


Subject(s)
Resistance Training , Adult , Biomechanical Phenomena , Humans , Male , Muscle Strength , Muscle, Skeletal , Posture , Young Adult
7.
J Strength Cond Res ; 35(3): 688-694, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-30199453

ABSTRACT

ABSTRACT: Wagle, JP, Carroll, KM, Cunanan, AJ, Wetmore, A, Taber, CB, DeWeese, BH, Sato, K, Stuart, CA, and Stone, MH. Preliminary investigation into the effect of ACTN3 and ACE polymorphisms on muscle and performance characteristics. J Strength Cond Res 35(3): 688-694, 2021-The purpose of this investigation was to explore the phenotypic and performance outcomes associated with ACTN3 and ACE polymorphisms. Ten trained men (age = 25.8 ± 3.0 years, height = 183.3 ± 4.1 cm, body mass = 92.3 ± 9.3 kg, and back squat to body mass ratio = 1.8 ± 0.3) participated. Blood samples were analyzed to determine ACTN3 and ACE polymorphisms. Standing ultrasonography images of the vastus lateralis (VL) were collected to determine whole muscle cross-sectional area (CSA-M), and a percutaneous muscle biopsy of the VL was collected to determine type I-specific CSA (CSA-T1), type II-specific CSA (CSA-T2), and type II to type I CSA ratio (CSA-R). Isometric squats were performed on force platforms with data used to determine peak force (IPF), allometrically scaled peak force (IPFa), and rate of force development (RFD) at various timepoints. One repetition maximum back squats were performed, whereby allometrically scaled dynamic strength (DSa) was determined. Cohen's d effect sizes revealed ACTN3 RR and ACE DD tended to result in greater CSA-M but differ in how they contribute to performance. ACTN3 RR's influence seems to be in the type II fibers, altering maximal strength, and ACE DD may influence RFD capabilities through a favorable CSA-R. Although the findings of the current investigation are limited by the sample size, the findings demonstrate the potential influence of ACTN3 and ACE polymorphisms on isometric and dynamic strength testing. This study may serve as a framework to generate hypotheses regarding the effect of genetics on performance.


Subject(s)
Actinin , Muscle Strength , Actinin/genetics , Adult , Humans , Male , Muscle Strength/genetics , Muscle, Skeletal/diagnostic imaging , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Quadriceps Muscle , Young Adult
8.
Sports (Basel) ; 8(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142849

ABSTRACT

Some controversy exists as to the most efficacious method of training to achieve enhanced levels of sport performance. Controversy concerning the efficacy of periodization and especially block periodization (BP) likely stems from the use of poorly or untrained subjects versus trained who may differ in their responses to a stimulus. The purpose of this study was to investigate the effect of training status on performance outcomes resulting from 11 weeks of BP training. Fifteen males were recruited for this study and placed into strong (age = 24.3 ± 1.9 years., body mass (BM) = 87.7 ± 8.7 kg, squat: body mass = 1.96 ± 0.16), moderate (age = 25.3 ± 2.7 years., body mass = 100.2 ± 15.5 kg, squat: body mass = 1.46 ± 0.14), or weak (age = 23.2 ± 3.9 yrs., body mass = 83.5 ± 17.1 kg, squat: body mass = 1.17 ± 0.07) groups based on relative strength. Testing was completed at baseline, and after each block which consisted of 1 repetition maximum (1RM) squat, 0 kg static jump (SJ), 0 kg countermovement jump (CMJ), 20 kg SJ, and 20 kg CMJ. Absolute and relative strength were strongly correlated with rates of improvement for absolute strength, relative strength, 0 kg, and 20 kg vertical jumps. All subjects substantially improved back squat (p < 0.001), relative back squat (p < 0.001) with large-very large effect sizes between groups for percent change favoring the weak group over the moderate and strong group for all performance variables. All subjects showed statistically significant improvements in 0 kg SJ (p < 0.001), 0 kg CMJ (p < 0.001), 20 kg SJ (p = 0.002), and 20 kg CMJ (p < 0.001). Statistically significant between group differences were noted for both 20 kg SJ (p = 0.01) and 20 kg CMJ (p = 0.043) with the strong group statistically greater jump heights than the weak group. The results of this study indicate BP training is effective in improving strength and explosive ability. Additionally, training status may substantially alter the response to a resistance training program.

9.
J Strength Cond Res ; 33(11): 2932-2935, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31469764

ABSTRACT

Carroll, KM, Wagle, JP, Sole, CJ, and Stone, MH. Intrasession and intersession reliability of countermovement jump testing in Division-I volleyball athletes. J Strength Cond Res 33(11): 2932-2935, 2019-The countermovement jump (CMJ) is a reliable and noninvasive test of lower-body neuromuscular performance. Many of the investigations used to establish the reliability of CMJ have been conducted in a controlled environment (i.e., laboratory setting). To better inform coaches, reliability of key CMJ variables should be examined in a practical environment. This study assessed intrasession and intersession reliability of CMJ variables in NCAA D-I volleyball athletes. Eleven female volleyball players (age = 19.8 ± 0.8 years, height = 1.75 ± 0.07 m, body mass = 71.6 ± 8.9 kg) performed twice weekly CMJ testing on force platforms across 14 weeks of training. Dependent variables were CMJ height (CMJH), reactive strength index modified (RSIMOD), relative peak power (rPP), and countermovement depth (CM depth). Intraclass correlation coefficients (ICCs), coefficient of variation (CV), and typical error (TE) were calculated, along with Pearson correlation coefficients. Intrasession reliability revealed excellent reliability values for CMJH (ICC = 0.94, CV = 2.9 ± 2.4%, TE = 1.25) and RSIMOD (ICC = 0.93, CV = 4.7 ± 4.9, TE = 0.03). Good reliability values were observed for rPP (ICC = 0.79, CV = 6.1 ± 10.9%, TE = 4.48), with only moderate reliability for CM depth (ICC = 0.61, CV = 7.1 ± 10.9%, TE = 16.9). Intersession reliability indicated excellent reliability for CMJH (ICC = 0.92, CV = 3.2 ± 2.8%, TE = 1.4) and RSIMOD (ICC = 0.92, CV = 5.4 ± 4.3%, TE = 0.03). However, poor reliability was observed for rPP (ICC = 0.41, CV = 10.4 ± 15.4%, TE = 7.95) and CM depth (ICC = 0.39, CV = 7.7 ± 10.8%, TE = 6.42). These results suggest that in the context of weekly athlete monitoring, measures such as CMJH and RSIMOD exhibit the greatest reliability. Conversely, measures such as CM depth and rPP exhibit high levels of variability. Practitioners seeking to track jump performance over time should be cognizant of CM depth variability and its potential impact on CMJ variables.


Subject(s)
Athletes , Exercise Test/standards , Volleyball , Adolescent , Algorithms , Female , Humans , Muscle Strength , Reproducibility of Results , Young Adult
10.
Sports (Basel) ; 7(7)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31373325

ABSTRACT

The purpose of the study was to compare the physiological responses of skeletal muscle to a resistance training (RT) program using repetition maximum (RM) or relative intensity (RISR). Fifteen well-trained males underwent RT 3 d·wk-1 for 10 weeks in either an RM group (n = 8) or RISR group (n = 7). The RM group achieved a relative maximum each day, while the RISR group trained based on percentages. The RM group exercised until muscular failure on each exercise, while the RISR group did not reach muscular failure throughout the intervention. Percutaneous needle biopsies of the vastus lateralis were obtained pre-post the training intervention, along with ultrasonography measures. Dependent variables were: Fiber type-specific cross-sectional area (CSA); anatomical CSA (ACSA); muscle thickness (MT); mammalian target of rapamycin (mTOR); adenosine monophosphate protein kinase (AMPK); and myosin heavy chains (MHC) specific for type I (MHC1), type IIA (MHC2A), and type IIX (MHC2X). Mixed-design analysis of variance and effect size using Hedge's g were used to assess within- and between-group alterations. RISR statistically increased type I CSA (p = 0.018, g = 0.56), type II CSA (p = 0.012, g = 0.81), ACSA (p = 0.002, g = 0.53), and MT (p < 0.001, g = 1.47). RISR also yielded a significant mTOR reduction (p = 0.031, g = -1.40). Conversely, RM statistically increased only MT (p = 0.003, g = 0.80). Between-group effect sizes supported RISR for type I CSA (g = 0.48), type II CSA (g = 0.50), ACSA (g = 1.03), MT (g = 0.72), MHC2X (g = 0.31), MHC2A (g = 0.87), and MHC1 (g = 0.59); with all other effects being of trivial magnitude (g < 0.20). Our results demonstrated greater adaptations in fiber size, whole-muscle size, and several key contractile proteins when using RISR compared to RM loading paradigms.

11.
Sports Biomech ; 18(1): 1-9, 2019 Feb.
Article in English | MEDLINE | ID: mdl-28949273

ABSTRACT

There is a need for reliable analysis techniques for kinetic data for coaches and sport scientists who employ athlete monitoring practices. The purpose of the study was: (1) to determine intra- and inter-rater reliability within a manual-based kinetic analysis program; and (2) to determine test-retest reliability of an algorithm-based kinetic analysis program. Five independent raters used a manual analysis program to analyse 100 isometric mid-thigh pull (IMTP) trials obtained from previously collected data. Each trial was analysed three times. The same IMTP trials were analysed using an algorithm-based analysis software. Variables measured were peak force, rate of force development from 0 to 50 ms (RFD50) and RFD from 0 to 200 ms (RFD200). Intraclass correlation coefficients (ICC) and coefficient of variation (CV) were used to assess intra- and inter-rater reliability. Nearly perfect reliability was observed for the manual-based (ICC > 0.92). However, poor intra- and inter-rater CV was observed for RFD (CV > 16.25% and CV > 32.27%, respectively). The algorithm-based method resulted in perfect reliability in all measurements (ICC = 1.0, CV = 0%). While manual methods of kinetic analysis may provide sufficient reliability, the perfect reliability observed within the algorithm-based method in the current study suggest it is a superior method for use in athlete monitoring programs.


Subject(s)
Algorithms , Biomechanical Phenomena , Software , Athletes , Exercise Test/methods , Humans , Isometric Contraction , Muscle Strength , Reproducibility of Results
12.
Sports Biomech ; 18(4): 390-401, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29558854

ABSTRACT

The purposes of this investigation were to: (1) assess kinetic characteristics of overload, (2) examine eccentric and concentric muscle activations and (3) explore velocity measurement as a method of intensity prescription in inertial flywheel squat training. A series of two experiments were performed: one assessing kinetic and muscle activation characteristics of flywheel squat training using three progressive inertial loads. The second experiment assessed inertial load-velocity relationships using six progressive inertial loads. Peak force, net impulse, positive-negative impulse ratio and positive-negative impulse duration ratio were each statistically significant between all three load conditions (p < 0.05). Concentric vastus lateralis muscle activation was the only significant increase between inertial loads (p < 0.05). Although not statistically significant, concentric quadricep muscle activation was increased from the lowest to highest inertia. Conversely, eccentric quadricep muscle activation was reduced from the lowest to highest inertia. In the second experiment, statistically significant regression equations were observed for average concentric velocity (R2 = 0.66) and peak concentric velocity (R2 = 0.60). In conclusion, our results indicate (1) overload is possible kinetically, (2) phase-specific muscle activation responds differently to increased inertia and (3) velocity has the potential to be used for load prescription in the inertial flywheel squat.


Subject(s)
Muscle, Skeletal/physiology , Resistance Training/instrumentation , Resistance Training/methods , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Kinetics , Male , Muscle Contraction , Young Adult
13.
Int J Sports Physiol Perform ; 14(1): 46-54, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-29809061

ABSTRACT

PURPOSE: To compare repetition maximum (RM) to relative intensity using sets and repetitions (RISR) resistance training on measures of training load, vertical jump, and force production in well-trained lifters. METHODS: Fifteen well-trained (isometric peak force = 4403.61 [664.69] N, mean [SD]) males underwent resistance training 3 d/wk for 10 wk in either an RM group (n = 8) or RISR group (n = 7). Weeks 8 to 10 consisted of a tapering period for both groups. The RM group achieved a relative maximum each day, whereas the RISR group trained based on percentages. Testing at 5 time points included unweighted (<1 kg) and 20-kg squat jumps, countermovement jumps, and isometric midthigh pulls. Mixed-design analyses of variance and effect size using Hedge's g were used to assess within- and between-groups alterations. RESULTS: Moderate between-groups effect sizes were observed for all squat-jump and countermovement-jump conditions supporting the RISR group (g = 0.76-1.07). A small between-groups effect size supported RISR for allometrically scaled isometric peak force (g = 0.20). Large and moderate between-groups effect sizes supported RISR for rate of force development from 0 to 50 ms (g = 1.25) and 0 to 100 ms (g = 0.89). Weekly volume load displacement was not different between groups (P > .05); however, training strain was statistically greater in the RM group (P < .05). CONCLUSIONS: Overall, this study demonstrated that RISR training yielded greater improvements in vertical jump, rate of force development, and maximal strength compared with RM training, which may be explained partly by differences in the imposed training stress and the use of failure/nonfailure training in a well-trained population.

14.
Sports (Basel) ; 6(3)2018 Jul 08.
Article in English | MEDLINE | ID: mdl-29986548

ABSTRACT

The current investigation was an examination of the repetition-to-repetition magnitudes and changes in kinetic and kinematic characteristics of the back squat using accentuated eccentric loading (AEL) and cluster sets. Trained male subjects (age = 26.1 ± 4.1 years, height = 183.5 ± 4.3 cm, body mass = 92.5 ± 10.5 kg, back squat to body mass ratio = 1.8 ± 0.3) completed four load condition sessions, each consisting of three sets of five repetitions of either traditionally loaded straight sets (TL), traditionally loaded cluster sets (TLC), AEL cluster sets (AEC), and AEL straight sets where only the initial repetition had eccentric overload (AEL1). Eccentric overload was applied using weight releasers, creating a total eccentric load equivalent to 105% of concentric one repetition maximum (1RM). Concentric load was 80% 1RM for all load conditions. Using straight sets (TL and AEL1) tended to decrease peak power (PP) (d = −1.90 to −0.76), concentric rate of force development (RFDCON) (d = −1.59 to −0.27), and average velocity (MV) (d = −3.91 to −1.29), with moderate decreases in MV using cluster sets (d = −0.81 to −0.62). Greater magnitude eccentric rate of force development (RFDECC) was observed using AEC at repetition three (R3) and five (R5) compared to all load conditions (d = 0.21⁻0.65). Large within-condition changes in RFDECC from repetition one to repetition three (∆REP1⁻3) were present using AEL1 (d = 1.51), demonstrating that RFDECC remained elevated for at least three repetitions despite overload only present on the initial repetition. Overall, cluster sets appear to permit higher magnitude and improved maintenance of concentric outputs throughout a set. Eccentric overload with the loading protocol used in the current study does not appear to potentiate concentric output regardless of set configuration but may cause greater RFDECC compared to traditional loading.

16.
Sports Med ; 48(4): 787-797, 2018 04.
Article in English | MEDLINE | ID: mdl-29307100

ABSTRACT

Recent reviews have attempted to refute the efficacy of applying Selye's general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye's work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete's training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.


Subject(s)
Adaptation, Physiological , General Adaptation Syndrome , Periodicity , Stress, Physiological , Humans , Sports
17.
Sports Med ; 47(12): 2473-2495, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28681170

ABSTRACT

Accentuated eccentric loading (AEL) prescribes eccentric load magnitude in excess of the concentric prescription using movements that require coupled eccentric and concentric actions, with minimal interruption to natural mechanics. This method has been theorized to potentiate concentric performance through higher eccentric loading and, thus, higher concentric force production. There is also evidence for favorable chronic adaptations, namely shifts to faster myosin heavy chain isoforms and changes in IIx-specific muscle cross-sectional area. However, research concerning the acute and chronic responses to AEL is inconclusive, likely due to inconsistencies in subjects, exercise selection, load prescription, and method of providing AEL. Therefore, the purpose of this review is to summarize: (1) the magnitudes and methods of AEL application; (2) the acute and chronic implications of AEL as a means to enhance force production; (3) the potential mechanisms by which AEL enhances acute and chronic performance; and (4) the limitations of current research and the potential for future study.


Subject(s)
Exercise/physiology , Muscle, Skeletal/physiology , Physical Education and Training/methods , Weight-Bearing/physiology , Adaptation, Physiological/physiology , Athletic Performance/physiology , Humans , Male , Muscle Contraction/physiology , Muscle, Skeletal/anatomy & histology
18.
Sports (Basel) ; 5(3)2017 Jul 14.
Article in English | MEDLINE | ID: mdl-29910411

ABSTRACT

The purpose of the current study was two-fold: (1) To examine the variation in velocity and power with increasing intensity in the back squat among subjects; and (2) To explore individual subject characteristics as possible explanations for variations of velocity in the back squat. Fourteen recreationally trained male subjects with experience in the back squat agreed to participate in the study (age = 25.0 ± 2.6 years, height = 178.9 ± 8.1 cm, body mass = 88.2 ± 15.8 kg). One-repetition maximums (1RM) were performed for each subject on force platforms with four linear position transducers attached to the barbell. The 1RM assessment was immediately preceded by warm-up sets at 65%, 75%, 85%, and 95% of estimated 1RM for 5, 3, 2, and 1 repetitions, respectively. Mean concentric velocity (MCV) and mean power were recorded for each intensity condition and were analyzed using Pearson correlation to determine the relationship between each variable and relative intensity (%1RM). Statistically significant negative relationships existed between %1RM and MCV (r = -0.892) and mean power (r = -0.604). Between-subject coefficient of variation tended to increase as %1RM increased for both MCV and mean power. These results suggest that MCV is superior to mean power as an indicator of relative intensity in the back squat. Additionally, the between-subject variation observed at higher intensities for MCV and mean power support the use of velocity ranges by strength and conditioning coaches.

19.
Sports (Basel) ; 5(4)2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29910448

ABSTRACT

The purpose of the current study was (1) to examine the differences between standing and lying measures of vastus lateralis (VL), muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA) using ultrasonography; and (2) to explore the relationships between lying and standing measures with isometric and dynamic assessments of force production-specifically peak force, rate of force development (RFD), impulse, and one-repetition maximum back squat. Fourteen resistance-trained subjects (age = 26.8 ± 4.0 years, height = 181.4 ± 6.0 cm, body mass = 89.8 ± 10.7 kg, back squat to body mass ratio = 1.84 ± 0.34) agreed to participate. Lying and standing ultrasonography images of the right VL were collected following 48 hours of rest. Isometric squat assessments followed ultrasonography, and were performed on force platforms with data used to determine isometric peak force (IPF), as well as RFD and impulse at various time points. Forty-eight hours later, one-repetition maximum back squats were performed by each subject. Paired-samples t-tests revealed statistically significant differences between standing and lying measurements of MT (p < 0.001), PA (p < 0.001), and CSA (p ≤ 0.05), with standing values larger in all cases. Further, standing measures were correlated more strongly and abundantly to isometric and dynamic performance. These results suggest that if practitioners intend to gain insight into strength-power potential based on ultrasonography measurements, performing the measurement collection with the athlete in a standing posture may be preferred.

SELECTION OF CITATIONS
SEARCH DETAIL
...