Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Genome Announc ; 3(2)2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25767232

ABSTRACT

Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

2.
Appl Environ Microbiol ; 77(11): 3860-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21498771

ABSTRACT

A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter(-1)). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Biodegradation, Environmental , Biodiversity , Soil Microbiology , Soil Pollutants, Radioactive/metabolism , Uranium/metabolism , Bacteria/metabolism , Ethanol/metabolism , Ferric Compounds/metabolism , Microarray Analysis , Nitrates/metabolism , Sulfates/metabolism , United States
3.
Appl Environ Microbiol ; 76(20): 6778-86, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20729318

ABSTRACT

Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 µM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Environmental Microbiology , Metagenome , Sulfates/metabolism , Uranium/metabolism , Bacteria/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Pollutants, Radioactive/metabolism , Tennessee
4.
Environ Sci Technol ; 44(13): 5104-11, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20527772

ABSTRACT

The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.


Subject(s)
Nitrates/chemistry , Uranium/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Gases , Geologic Sediments/chemistry , Hydrogen-Ion Concentration , Nitrites/chemistry , Nitrogen/chemistry , Oxygen/chemistry , RNA, Ribosomal, 16S/metabolism , Sulfides/chemistry , Sulfur/chemistry , Surface Properties
5.
Appl Environ Microbiol ; 76(4): 1014-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20023107

ABSTRACT

A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).


Subject(s)
Bacteria, Anaerobic/isolation & purification , Water Microbiology , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Base Composition , Base Sequence , Cellobiose/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fermentation , Genes, Bacterial , Hot Temperature , Microscopy, Electron, Scanning , Molecular Sequence Data , Phenotype , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Wyoming
6.
Environ Microbiol ; 11(10): 2611-26, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19624708

ABSTRACT

A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Biodiversity , Uranium/metabolism , Water Microbiology , Bacteria/genetics , Biodegradation, Environmental , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Ethanol/metabolism , Genes, Bacterial , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Water Pollutants, Radioactive/metabolism
7.
BMC Genomics ; 10: 34, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19154596

ABSTRACT

BACKGROUND: Zymomonas mobilis ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. RESULTS: In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (glk, zwf, pgl, pgk, and eno) and gene pdc, encoding a key enzyme leading to ethanol production, were at least 30-fold more abundant under anaerobic conditions in the stationary phase based on quantitative-PCR results. We also identified differentially expressed ZM4 genes predicted by The Institute for Genomic Research (TIGR) that were not predicted in the primary annotation. CONCLUSION: High oxygen concentrations present during Z. mobilis fermentations negatively influence fermentation performance. The maximum specific growth rates were not dramatically different between aerobic and anaerobic conditions, yet oxygen did affect the physiology of the cells leading to the buildup of metabolic byproducts that ultimately led to greater differences in transcriptomic profiles in stationary phase.


Subject(s)
Fermentation , Gene Expression Profiling , Metabolome , Zymomonas/genetics , Zymomonas/metabolism , Acetates/metabolism , Aerobiosis , Anaerobiosis , Chromatography, High Pressure Liquid , Ethanol/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Bacterial , Genes, Bacterial , Glucose/metabolism , Lactic Acid/metabolism , Metabolomics , Oligonucleotide Array Sequence Analysis , Oxygen/metabolism , RNA, Bacterial/metabolism , RNA, Messenger/metabolism
8.
ISME J ; 3(1): 47-64, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18769457

ABSTRACT

Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biodegradation, Environmental , Biodiversity , Environmental Microbiology , Uranium/metabolism , Bacteria/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Ethanol/metabolism , Genes, rRNA , Metals/metabolism , Oxidation-Reduction , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Sulfates/metabolism
9.
Appl Environ Microbiol ; 74(12): 3718-29, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18456853

ABSTRACT

Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 microg/liter or 0.126 microM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , Biodiversity , Geologic Sediments/microbiology , Uranium/metabolism , Bacteria/isolation & purification , Cluster Analysis , Colony Count, Microbial , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Ethanol/metabolism , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , United States
10.
Environ Sci Technol ; 41(16): 5716-23, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17874778

ABSTRACT

Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 microM uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agengy maximum contaminant limit (MCL) for drinking water (< 30/microg L(-1) or 0.126 microM). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L(-1)) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from < 0.13 to 2.0 microM at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. Atthe completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 microM. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.


Subject(s)
Oxygen/metabolism , Uranium/isolation & purification , Bacteria/metabolism , Biodegradation, Environmental , Ethanol , Fresh Water/chemistry , Geologic Sediments/chemistry , Oxidation-Reduction , Soil , Solubility , Spectrum Analysis , United States , United States Environmental Protection Agency , Uranium/metabolism , Water Pollutants, Radioactive/isolation & purification , Water Pollutants, Radioactive/metabolism
11.
Environ Sci Technol ; 37(9): 1850-8, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12775057

ABSTRACT

The rapid kinetics of bacterial U(VI) reduction and low solubility of uraninite (UO2,cr) make this process an attractive option for removing uranium from groundwater. Nevertheless, conditions that may promote or inhibit U(VI) reduction are not well-defined. Recent descriptions of Ca-UO2-CO3 complexes indicate that these species may dominate the aqueous speciation of U(VI) in many environments. We monitored the bacterial reduction of U(VI) in bicarbonate-buffered solution in the presence and absence of Ca. XAFS measurements confirmed the presence of a Ca-U(VI)-C03 complex in the initial solutions containing calcium. Calcium, at millimolar concentrations (0.45-5 mM), caused a significant decrease in the rate and extent of bacterial U(VI) reduction. Both facultative (Shewanella putrefaciens strain CN32) and obligate (Desulfovibrio desulfuricans, Geobacter sulfurreducens) anaerobic bacteria were affected by the presence of calcium. Reduction of U(VI) ceased when the calculated system Eh reached -0.046 +/- 0.001 V, based on the Ca2UO2(CO3)3 --> UO2,cr couple. The results are consistent with the hypothesis that U is a less energetically favorable electron acceptor when the Ca-UO2-CO3 complexes are present. The results do not support Ca inhibition caused by direct interactions with the cells or with the electron donor as the reduction of fumarate or Tc(VII)O4- under identical conditions was unaffected by the presence of Ca.


Subject(s)
Calcium/chemistry , Uranium Compounds/chemistry , Uranium/chemistry , Bacteria, Anaerobic/physiology , Calcium/pharmacology , Solubility
12.
J Contam Hydrol ; 58(3-4): 191-207, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12400832

ABSTRACT

The codisposal of toxic metals and radionuclides with organic chelating agents has been implicated in the facilitated transport of the inorganic contaminants away from primary waste disposal areas. We investigated the transport of Co(II)NTA through undisturbed cores of fractured shale saprolite. Experiments were conducted across the pH range 4 to 8 by collecting cores from different locations within the weathering profile. Aqueous complexation, adsorption, dissociation and oxidation reactions influenced Co(II)NTA transport. The suite of reaction products identified in column effluent varied with experimental pH. At low pH and in the presence of abundant exchangeable aluminum, Co transport occurred predominantly as the Co2+ ion. At higher pH, Co was transported primarily as Co(II)NTA and the Co(III) species Co(III)(HNTA)2 and Co(III)(IDA)2. The formation of the geochemical oxidation products (Co(III) species) has far reaching implications as these compounds are kinetically and thermodynamically stable, are transported more rapidly than Co(II)NTA, and are resistant to biodegradation. These results demonstrate that natural minerals, in the physical structure encountered naturally, can be more important in the formation of mobile, stable contaminant forms than they can be for the retardation and dissociation of the contaminants.


Subject(s)
Chelating Agents/chemistry , Cobalt Radioisotopes/chemistry , Nitrilotriacetic Acid/chemistry , Water Pollutants, Chemical , Water Pollutants, Radioactive , Chromatography, Ion Exchange , Diffusion , Fresh Water , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...