Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499530

ABSTRACT

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Subject(s)
Keratins, Hair-Specific , Transcription Factors , Animals , Humans , Transcription Factors/metabolism , Skin/metabolism , Hair/metabolism , Keratins/genetics , Keratins/metabolism , Amphibians , Mammals/metabolism
2.
Leukemia ; 37(12): 2404-2413, 2023 12.
Article in English | MEDLINE | ID: mdl-37794102

ABSTRACT

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Guide, CRISPR-Cas Systems , Animals , Humans , Histone Methyltransferases/genetics , Xenopus/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Mutation
3.
Sci Rep ; 10(1): 14662, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32887910

ABSTRACT

CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Penetrance , Xenopus laevis/embryology , Xenopus laevis/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , CRISPR-Associated Protein 9/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Frameshift Mutation , Gene Frequency , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , RNA, Guide, Kinetoplastida/genetics
4.
Oncogene ; 39(13): 2692-2706, 2020 03.
Article in English | MEDLINE | ID: mdl-32001819

ABSTRACT

Alterations of the retinoblastoma and/or the p53 signaling network are associated with specific cancers such as high-grade astrocytoma/glioblastoma, small-cell lung cancer (SCLC), choroid plexus tumors, and small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC). However, the intricate functional redundancy between RB1 and the related pocket proteins RBL1/p107 and RBL2/p130 in suppressing tumorigenesis remains poorly understood. Here we performed lineage-restricted parallel inactivation of rb1 and rbl1 by multiplex CRISPR/Cas9 genome editing in the true diploid Xenopus tropicalis to gain insight into this in vivo redundancy. We show that while rb1 inactivation is sufficient to induce choroid plexus papilloma, combined rb1 and rbl1 inactivation is required and sufficient to drive SC-PaNEC, retinoblastoma and astrocytoma. Further, using a novel Li-Fraumeni syndrome-mimicking tp53 mutant X. tropicalis line, we demonstrate increased malignancy of rb1/rbl1-mutant glioma towards glioblastoma upon concomitant inactivation of tp53. Interestingly, although clinical SC-PaNEC samples are characterized by abnormal p53 expression or localization, in the current experimental models, the tp53 status had little effect on the establishment and growth of SC-PaNEC, but may rather be essential for maintaining chromosomal stability. SCLC was only rarely observed in our experimental setup, indicating requirement of additional or alternative oncogenic insults. In conclusion, we used CRISPR/Cas9 to delineate the tumor suppressor properties of Rbl1, generating new insights in the functional redundancy within the retinoblastoma protein family in suppressing neuroendocrine pancreatic cancer and glioma/glioblastoma.


Subject(s)
Carcinoma, Neuroendocrine/pathology , Carcinoma, Small Cell/pathology , Glioblastoma/pathology , Pancreatic Neoplasms/pathology , Retinoblastoma-Like Protein p107/metabolism , Xenopus Proteins/metabolism , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Small Cell/genetics , Disease Models, Animal , Gene Editing , Glioblastoma/genetics , Humans , Pancreatic Neoplasms/genetics , Retinoblastoma-Like Protein p107/genetics , Signal Transduction/genetics , Xenopus , Xenopus Proteins/genetics , Pancreatic Neoplasms
5.
Genet Med ; 21(8): 1998, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30297699

ABSTRACT

The original version of this Article contained an error in the spelling of the author Anja K. Mayer, which was incorrectly given as Anja Kathrin Mayer. This has now been corrected in both the PDF and HTML versions of the Article.

6.
Genet Med ; 20(2): 202-213, 2018 02.
Article in English | MEDLINE | ID: mdl-28749477

ABSTRACT

PurposePart of the hidden genetic variation in heterogeneous genetic conditions such as inherited retinal diseases (IRDs) can be explained by copy-number variations (CNVs). Here, we explored the genomic landscape of IRD genes listed in RetNet to identify and prioritize those genes susceptible to CNV formation.MethodsRetNet genes underwent an assessment of genomic features and of CNV occurrence in the Database of Genomic Variants and literature. CNVs identified in an IRD cohort were characterized using targeted locus amplification (TLA) on extracted genomic DNA.ResultsExhaustive literature mining revealed 1,345 reported CNVs in 81 different IRD genes. Correlation analysis between rankings of genomic features and CNV occurrence demonstrated the strongest correlation between gene size and CNV occurrence of IRD genes. Moreover, we identified and delineated 30 new CNVs in IRD cases, 13 of which are novel and three of which affect noncoding, putative cis-regulatory regions. Finally, the breakpoints of six complex CNVs were determined using TLA in a hypothesis-neutral manner.ConclusionWe propose a ranking of CNV-prone IRD genes and demonstrate the efficacy of TLA for the characterization of CNVs on extracted DNA. Finally, this IRD-oriented CNV study can serve as a paradigm for other genetically heterogeneous Mendelian diseases with hidden genetic variation.


Subject(s)
Chromosome Mapping , DNA Copy Number Variations , Genome, Human , Genomics , Open Reading Frames , RNA, Untranslated , Retinal Diseases/genetics , Alleles , Cadherin Related Proteins , Cadherins/genetics , Databases, Genetic , Eye Proteins/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics/methods , Humans , Regulatory Sequences, Nucleic Acid , Retinal Diseases/diagnosis , Sequence Analysis, DNA , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...