Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1066391, 2023.
Article in English | MEDLINE | ID: mdl-37064248

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious condition that can develop 4-6 weeks after a school age child becomes infected by SARS-CoV-2. To date, in the United States more than 8,862 cases of MIS-C have been identified and 72 deaths have occurred. This syndrome typically affects children between the ages of 5-13; 57% are Hispanic/Latino/Black/non-Hispanic, 61% of patients are males and 100% have either tested positive for SARS-CoV-2 or had direct contact with someone with COVID-19. Unfortunately, diagnosis of MIS-C is difficult, and delayed diagnosis can lead to cardiogenic shock, intensive care admission, and prolonged hospitalization. There is no validated biomarker for the rapid diagnosis of MIS-C. In this study, we used Grating-coupled Fluorescence Plasmonic (GCFP) microarray technology to develop biomarker signatures in pediatric salvia and serum samples from patients with MIS-C in the United States and Colombia. GCFP measures antibody-antigen interactions at individual regions of interest (ROIs) on a gold-coated diffraction grating sensor chip in a sandwich immunoassay to generate a fluorescent signal based on analyte presence within a sample. Using a microarray printer, we designed a first-generation biosensor chip with the capability of capturing 33 different analytes from 80  µ L of sample (saliva or serum). Here, we show potential biomarker signatures in both saliva and serum samples in six patient cohorts. In saliva samples, we noted occasional analyte outliers on the chip within individual samples and were able to compare those samples to 16S RNA microbiome data. These comparisons indicate differences in relative abundance of oral pathogens within those patients. Microsphere Immunoassay (MIA) of immunoglobulin isotypes was also performed on serum samples and revealed MIS-C patients had several COVID antigen-specific immunoglobulins that were significantly higher than other cohorts, thus identifying potential new targets for the second-generation biosensor chip. MIA also identified additional biomarkers for our second-generation chip, verified biomarker signatures generated on the first-generation chip, and aided in second-generation chip optimization. Interestingly, MIS-C samples from the United States had a more diverse and robust signature than the Colombian samples, which was also illustrated in the MIA cytokine data. These observations identify new MIS-C biomarkers and biomarker signatures for each of the cohorts. Ultimately, these tools may represent a potential diagnostic tool for use in the rapid identification of MIS-C.

2.
Diagn Microbiol Infect Dis ; 104(1): 115741, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35767925

ABSTRACT

Although measles was eliminated in the United States in 2000, a severe outbreak occurred between October 2018 and September 2019. New York was especially hard hit. Serology played an integral role in determining immune status (IgG) and identifying, along with molecular analyses, acute measles infections (IgM). Although an indirect immunofluorescence assay (IFA) was historically used by the New York State Department of Health for measles IgM detection, a higher throughput assay was needed to address the increased specimen numbers. Four commercial enzyme-linked immunosorbent assays (ELISAs) were evaluated for sensitivity and specificity in detecting measles IgM. Two ELISA formats were compared, indirect ELISA and IgM antibody capture. Both formats had comparable specificity as determined by cross-reactivity to non-measles specimens. Overall, the sensitivity of the capture ELISAs was greater than the indirect ELISAs and comparable to the indirect immunofluorescence assay with benefits regarding capacity, cost, and turnaround time.


Subject(s)
Antibodies, Viral , Measles , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin M , Measles/diagnosis , Measles/epidemiology , New York/epidemiology , Sensitivity and Specificity , Serologic Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...