Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Therm Biol ; 122: 103868, 2024 May.
Article in English | MEDLINE | ID: mdl-38852485

ABSTRACT

Transient Receptor Potential (TRP) ion channels are important for sensing environmental temperature. In rodents, TRPV4 senses warmth (25-34 °C), TRPV1 senses heat (>42 °C), TRPA1 putatively senses cold (<17 °C), and TRPM8 senses cool-cold (18-26 °C). We investigated if knockout (KO) mice lacking these TRP channels exhibited changes in thermal preference. Thermal preference was tested using a dual hot-cold plate with one thermoelectric surface set at 30 °C and the adjacent surface at a temperature of 15-45 °C in 5 °C increments. Blinded observers counted the number of times mice crossed through an opening between plates and the percentage of time spent on the 30 °C plate. In a separate experiment, observers blinded as to genotype also assessed the temperature at the location on a thermal gradient (1.83 m, 4-50 °C) occupied by the mouse at 5- or 10-min intervals over 2 h. Male and female wildtype mice preferred 30 °C and significantly avoided colder (15-20 °C) and hotter (40-45 °C) temperatures. Male TRPV1KOs and TRPA1KOs, and TRPV4KOs of both sexes, were similar, while female WTs, TRPV1KOs, TRPA1KOs and TRPM8KOs did not show significant thermal preferences across the temperature range. Male and female TRPM8KOs did not significantly avoid the coldest temperatures. Male mice (except for TRPM8KOs) exhibited significantly fewer plate crossings at hot and cold temperatures and more crossings at thermoneutral temperatures, while females exhibited a similar but non-significant trend. Occupancy temperatures along the thermal gradient exhibited a broad distribution that shrank somewhat over time. Mean occupancy temperatures (recorded at 90-120 min) were significantly higher for females (30-34 °C) compared to males (26-27 °C) of all genotypes, except for TRPA1KOs which exhibited no sex difference. The results indicate (1) sex differences with females (except TRPA1KOs) preferring warmer temperatures, (2) reduced thermosensitivity in female TRPV1KOs, and (3) reduced sensitivity to cold and innocuous warmth in male and female TRPM8KOs consistent with previous studies.


Subject(s)
Mice, Knockout , TRPA1 Cation Channel , TRPV Cation Channels , Thermosensing , Animals , Female , Male , Mice , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/physiology , Mice, Inbred C57BL , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Hot Temperature , Cold Temperature
2.
Neuroscience ; 449: 35-45, 2020 11 21.
Article in English | MEDLINE | ID: mdl-33010342

ABSTRACT

Acute itch is elicited by histamine, as well as non-histaminergic itch mediators including chloroquine, BAM8-22 and Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL). When injected intradermally, histamine binds to histamine H1 and H4 receptors that activate transient receptor potential vanilloid 1 (TRPV1) to depolarize pruriceptors. Chloroquine, BAM8-22, and SLIGRL, respectively, bind to Mas-related G-protein-coupled receptors MrgprA3, MrgprC11, and MrgprC11/PAR2 that in turn activate transient receptor potential ankyrin 1 (TRPA1). In this study we tested if histamine, chloroquine, BAM8-22 and SLIGRL elicit thermal hyperalgesia and mechanical allodynia in adult male mice. We measured the latency of hindpaw withdrawal from a noxious heat stimulus, and the threshold for hindpaw withdrawal from a von Frey mechanical stimulus. Intraplantar injection of histamine resulted in significant thermal hyperalgesia (p < 0.001) and mechanical allodynia (p < 0.001) ipsilaterally that persisted for 1 h. Pretreatment with the TRPV1 antagonist AMG-517 (10 or 20 µg), but not the TRPA1 antagonist HC-030031 (50 or 100 µg), significantly attenuated the magnitude and time course of thermal hyperalgesia and mechanical allodynia elicited by histamine (p < 0.001 for both), indicating that these effects are mediated by TRPV1. In contrast, pretreatment with the TRPA1 antagonist significantly reduced thermal hyperalgesia and mechanical allodynia elicited by chloroquine (p < 0.001 for both ), BAM-822 (p < 0.01, p < 0.001, respectively) and SLGRL (p < 0.05, p < 0.001, respectively), indicating that effects elicited by these non-histaminergic itch mediators require TRPA1. TRPV1 and TRPA1 channel inhibitors thus may have potential use in reducing hyperalgesia and allodynia associated with histaminergic and non-histaminergic itch, respectively.


Subject(s)
Histamine/pharmacology , Hyperalgesia , Pruritus , Transient Receptor Potential Channels , Animals , Male , Mice , Pruritus/chemically induced , Pruritus/drug therapy , Receptors, G-Protein-Coupled/metabolism , TRPA1 Cation Channel , TRPV Cation Channels
3.
Itch (Phila) ; 4(3)2019.
Article in English | MEDLINE | ID: mdl-34164579

ABSTRACT

Plaque psoriasis is a chronic inflammatory skin disease that affects a substantial proportion of the world population. This disorder is characterized by scaly, thick skin, intense ongoing itch, and itch from light touch (such as clothing contacting skin, called "alloknesis"). Imiquimod is a topical treatment for basal cell carcinomas and warts that has been used to create a mouse model of plaque psoriasis. Imiquimod-treated male, but not female, wildtype B6 mice showed significant increases in spontaneous scratching, while both sexes exhibited increased alloknesis, indicative of chronic itch. TRPV1 and TRPA1 knockout (KO) mice all exhibited numeric increases in spontaneous scratching which were significant for TRPV1KO mice and TRPA1KO males. Female TRPV1KO and TRPA1KO mice exhibited imiquimod-induced increases in alloknesis scores that did not significantly differ from wildtypes, while alloknesis scores in imiquimod-treated male TRPV1KO and TRPA1KO mice were significantly lower compared with wildtypes, suggesting that these ion channels are necessary for the development of alloknesis in males but not females in this model. Curiously, none of the groups exhibited any significant overall change in chloroquine-evoked scratching following imiquimod treatment, indicating that hyperknesis does not develop in this mouse model. Overall, the data indicate that there are sex differences in this mouse model of psoriasis, and that TRPV1 and TRPA1 ion channels have a small role in promoting the development of itch sensitization. This contrasts with the far greater role these channels play in the manifestation of skin changes in psoriatic dermatitis.

4.
Itch (Phila) ; 3(3)2018 Sep.
Article in English | MEDLINE | ID: mdl-34136640

ABSTRACT

Inactivation of descending pathways enhanced responses of spinal dorsal horn neurons to noxious stimuli, but little is known regarding tonic descending modulation of spinal itch transmission. To study effects of cervical spinal cold block on responses of dorsal horn neurons to itch-evoking and pain-evoking stimuli, single-unit recordings were made from superficial dorsal horn wide dynamic range and nociceptive-specific-type neurons in pentobarbital-anesthetized mice. Intradermal histamine excited 17 units. Cold block starting 1 minute after intradermal injection of histamine caused a marked decrease in firing. The histamine-evoked response during and following cold block was significantly lower compared with control histamine-evoked responses in the absence of cold block. A similar but weaker depressant effect of cold block was observed for dorsal horn unit responses to chloroquine. Twenty-six units responded to mustard oil allyl isothiocyanate (AITC), with a further significant increase in firing during the 1-minute period of cold block beginning 1 minute after AITC application. Activity during cold block was significantly greater compared with the same time period of control responses to AITC in the absence of cold block. Ten units' responses to noxious heat were significantly enhanced during cold block, while 6 units' responses were reduced and 18 unaffected. Cold block had no effect on mechanically evoked responses. These results indicate that spinal chemonociceptive transmission is under tonic descending inhibitory modulation, while spinal pruriceptive transmission is under an opposing, tonic descending facilitatory modulation.

5.
J Comp Neurol ; 524(2): 244-56, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26099199

ABSTRACT

Itch is relayed to higher centers by projection neurons in the spinal and medullary dorsal horn. We employed a double-label method to map the ascending projections of pruriceptive and nociceptive trigeminal and spinal neurons. The retrograde tracer fluorogold (FG) was stereotaxically injected into the right thalamus or lateral parabrachial area (LPb) in mice. Seven days later, mice received intradermal (id) microinjection of histamine, chloroquine, capsaicin, or vehicle into the left cheek. Histamine, chloroquine, and capsaicin intradermally elicited similar distributions of Fos-positive neurons in the medial aspect of the superficial medullary and spinal dorsal horn from the trigeminal subnucleus caudalis to C2. Among neurons retrogradely labeled from the thalamus, 43%, 8%, and 22% were Fos-positive following id histamine, chloroquine, or capsaicin. Among the Fos-positive neurons following pruritic or capsaicin stimuli, ∼1-2% were retrogradely labeled with FG. Trigeminoparabrachial projection neurons exhibited a higher incidence of double labeling in the superficial dorsal horn. Among the neurons retrogradely labeled from LPb, 36%, 29%, and 33% were Fos positive following id injection of histamine, chloroquine, and capsaicin, respectively. Among Fos-positive neurons elicited by id histamine, chloroquine, and capsaicin, respectively, 3.7%, 4.3%, and 4.1% were retrogradely labeled from LPb. The present results indicate that, overall, relatively small subpopulations of pruriceptive and/or nociceptive neurons innervating the cheek project to thalamus or LPb. These results imply that the vast majority of pruritogen- and algogen-responsive spinal neurons are likely to function as interneurons relaying information to projection neurons and/or participating in segmental nocifensive circuits.


Subject(s)
Neurons/physiology , Parabrachial Nucleus/physiology , Thalamus/cytology , Trigeminal Nucleus, Spinal/physiology , Animals , Antipruritics/pharmacology , Brain Mapping , Capsaicin/pharmacology , Chloroquine/pharmacology , Histamine/pharmacology , Histamine Agonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Oncogene Proteins v-fos/metabolism , Posterior Horn Cells/drug effects , Posterior Horn Cells/metabolism , Stilbamidines
6.
Pain ; 156(7): 1240-1246, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25830923

ABSTRACT

We investigated roles for spinal neurons expressing the neurokinin-1 receptor (NK1R) and/or gastrin-releasing peptide receptor (GRPR) in a mouse model of ovalbumin (OVA)-induced chronic atopic dermatitis. Mice receiving repeated topical application of OVA exhibited atopic-like skin lesions and behavioral signs of chronic itch including spontaneous scratching, touch-evoked scratching (alloknesis), and enhancement of chloroquine-evoked scratching (hyperknesis). Substance P-saporin (SP-SAP) and bombesin-saporin (BB-SAP) were intrathecally injected into OVA-sensitized mice to neurotoxically ablate NK1R- or GRPR-expressing spinal neurons, respectively. SP-SAP diminished the expression of NK1R in the superficial spinal dorsal horn and significantly attenuated all behavioral signs of chronic itch. BB-SAP reduced the spinal dorsal horn expression of GRPR and significantly attenuated hyperknesis, with no effect on spontaneous scratching or alloknesis. To investigate whether NK1R-expressing spinal neurons project in ascending somatosensory pathways, we performed a double-label study. The retrograde tracer, Fluorogold (FG), was injected into either the somatosensory thalamus or lateral parabrachial nucleus. In the upper cervical (C1-2) spinal cord, most neurons retrogradely labeled with FG were located in the dorsomedial aspect of the superficial dorsal horn. Of FG-labeled spinal neurons, 89% to 94% were double labeled for NK1R. These results indicate that NK1R-expressing spinal neurons play a major role in the expression of symptoms of chronic itch and give rise to ascending somatosensory projections. Gastrin-releasing peptide receptor-expressing spinal neurons contribute to hyperknesis but not to alloknesis or ongoing itch. NK1R-expressing spinal neurons represent a potential target to treat chronic itch.


Subject(s)
Posterior Horn Cells/physiology , Pruritus/metabolism , Receptors, Neurokinin-1/biosynthesis , Animals , Chronic Disease , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Pruritus/etiology , Receptors, Neurokinin-1/genetics
7.
Acta Derm Venereol ; 95(2): 147-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24890341

ABSTRACT

The kappa-opioid agonist, nalfurafine, has been approved in Japan for treatment of itch in patients with chronic kidney disease. We presently investigated if systemic administration of nalfurafine inhibited ongoing or touch-evoked scratching behavior (alloknesis) following acute intradermal injection of histamine or the non-histaminergic itch mediator, chloroquine, in mice. We also investigated if nalfurafine suppressed spontaneous or touch-evoked scratching in an experimental model of chronic dry skin itch. Nalfurafine reduced scratching evoked by histamine and chloroquine. Following acute histamine, but not chloroquine, low-threshold mechanical stimuli reliably elicited directed hindlimb scratching behavior, which was significantly attenuated by nalfurafine. In mice with experimental dry skin, nalfurafine abolished spontaneous scratching but had no effect on alloknesis. Nalfurafine thus appears to be a promising treatment for acute itch as well as ongoing itch of dry skin.


Subject(s)
Antipruritics/pharmacology , Behavior, Animal/drug effects , Ichthyosis/drug therapy , Morphinans/pharmacology , Pruritus/prevention & control , Skin/drug effects , Spiro Compounds/pharmacology , Animals , Chloroquine , Disease Models, Animal , Histamine , Ichthyosis/complications , Ichthyosis/physiopathology , Ichthyosis/psychology , Male , Mechanotransduction, Cellular/drug effects , Mice , Mice, Inbred C57BL , Pressure , Pruritus/chemically induced , Pruritus/physiopathology , Pruritus/psychology , Skin/physiopathology , Time Factors
8.
J Neurophysiol ; 112(9): 2283-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25122701

ABSTRACT

Intrathecal administration of the neurotoxin bombesin-saporin reduces or abolishes pruritogen-evoked scratching behavior. We investigated whether spinal neurons that respond to intradermal (ID) injection of pruritogens also respond to spinal superfusion of bombesin and vice versa. Single-unit recordings were made from superficial lumbar spinal dorsal horn neurons in anesthetized mice. We identified neurons with three search strategies: 1) ID injection of the nonhistaminergic itch mediator chloroquine, 2) spinal superfusion of bombesin, and 3) noxious pinch. All units were tested with an array of itch mediators (chloroquine, histamine, SLIGRL, BAM8-22), algogens [capsaicin, allyl isothiocyanate (AITC)], and physical stimuli (brush, pinch, noxious heat, cooling) applied to the hindlimb receptive field. The vast majority of chloroquine-responsive units also responded to bombesin. Of 26 chloroquine-sensitive units tested, most responded to SLIGRL, half responded to histamine and/or BAM8-22, and most responded to capsaicin and/or AITC as well as noxious thermal and mechanical stimuli. Of 29 bombesin-responsive units, a large majority also responded to other itch mediators as well as AITC, capsaicin, and noxious thermal and mechanical stimuli. Responses to successive applications of bombesin exhibited tachyphylaxis. In contrast, of 36 units responsive to noxious pinch, the majority (67%) did not respond to ID chloroquine or spinal bombesin. It is suggested that chloroquine- and bombesin-sensitive spinal neurons signal itch from the skin.


Subject(s)
Bombesin/pharmacology , Posterior Horn Cells/physiology , Pruritus/physiopathology , Animals , Capsaicin/pharmacology , Chloroquine/pharmacology , Histamine/pharmacology , Hot Temperature , Isothiocyanates/pharmacology , Male , Mice , Mice, Inbred C57BL , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Posterior Horn Cells/classification , Posterior Horn Cells/drug effects , Touch
9.
Pain ; 155(4): 814-820, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24468031

ABSTRACT

The incidence of chronic oral pain such as burning mouth syndrome is greater in peri-menopausal females, and was postulated to be associated with gustatory nerve damage. We investigated whether bilateral transection of the chorda tympani, with or without accompanying ovariectomy, affected oral capsaicin avoidance in rats. Female rats had restricted access to 2 bottles, 1 bottle containing capsaicin (concentration range: 0.33-33 µM/L) and the other vehicle. Percent volume of capsaicin consumption and lick counts were measured. The concentration series was tested before and 0.5, 3, 6, 9, and 12 months after the following surgical procedures: (a) bilateral transection of the chorda tympani (CTx); (b) ovariectomy (OVx); (3) CTx plus OVx; or (4) sham CT surgery. Before surgery there was a concentration-dependent decrease in licks and volume of capsaicin consumed, with a threshold between 0.1 and 0.3 ppm. The majority of drink licks occurred during the first 9 minutes of access. Over the 12-month test period, the CTx group did not exhibit reduced capsaicin consumption, and consumed significantly more capsaicin at 6 and 9 months postsurgery. Rats in the OVx group consistently consumed significantly less capsaicin and exhibited significantly higher counts of capsaicin-evoked Fos-like immunoreactivity in the dorsomedial trigeminal subnucleus caudalis (Vc) compared to all other treatment groups. That CTx, with or without OVx, did not enhance capsaicin avoidance indicates that damage to the gustatory system does not disinhibit trigeminal nociceptive transmission.


Subject(s)
Capsaicin/toxicity , Chorda Tympani Nerve/physiology , Facial Pain/chemically induced , Sensory System Agents/toxicity , Analysis of Variance , Animals , Body Weight/drug effects , Choice Behavior/physiology , Chorda Tympani Nerve/surgery , Dose-Response Relationship, Drug , Drinking Behavior/drug effects , Drinking Behavior/physiology , Facial Pain/physiopathology , Female , Male , Oncogene Proteins v-fos/metabolism , Ovariectomy , Rats , Time Factors
10.
Pain ; 155(1): 80-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24041961

ABSTRACT

We investigated roles for substance P (SP), gastrin-releasing peptide (GRP), and glutamate in the spinal neurotransmission of histamine-dependent and -independent itch. In anesthetized mice, responses of single superficial dorsal horn neurons to intradermal (i.d.) injection of chloroquine were partially reduced by spinal application of the α-amino-3-hydroxy-5-methyl-4-isoxazole proprionate acid (AMPA)/kainate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Co-application of CNQX plus a neurokinin-1 (NK-1) antagonist produced stronger inhibition, while co-application of CNQX, NK-1, and GRP receptor (GRPR) antagonists completely inhibited firing. Nociceptive-specific and wide dynamic range-type neurons exhibited differential suppression by CNQX plus either the GRPR or NK-1 antagonist, respectively. Neuronal responses elicited by i.d. histamine were abolished by CNQX alone. In behavioral studies, individual intrathecal administration of a GRPR, NK-1, or AMPA antagonist each significantly attenuated chloroquine-evoked scratching behavior. Co-administration of the NK-1 and AMPA antagonists was more effective, and administration of all 3 antagonists abolished scratching. Intrathecal CNQX alone prevented histamine-evoked scratching behavior. We additionally employed a double-label strategy to investigate molecular markers of pruritogen-sensitive dorsal root ganglion (DRG) cells. DRG cells responsive to histamine and/or chloroquine, identified by calcium imaging, were then processed for co-expression of SP, GRP, or vesicular glutamate transporter type 2 (VGLUT2) immunofluorescence. Subpopulations of chloroquine- and/or histamine-sensitive DRG cells were immunopositive for SP and/or GRP, with >80% immunopositive for VGLUT2. These results indicate that SP, GRP, and glutamate each partially contribute to histamine-independent itch. Histamine-evoked itch is mediated primarily by glutamate, with GRP playing a lesser role. Co-application of NK-1, GRP, and AMPA receptor antagonists may prove beneficial in treating chronic itch.


Subject(s)
Ganglia, Spinal/pathology , Gastrin-Releasing Peptide/metabolism , Glutamic Acid/metabolism , Neurons/physiology , Pruritus/metabolism , Pruritus/pathology , Substance P/metabolism , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Animals , Antirheumatic Agents/pharmacology , Bombesin/analogs & derivatives , Bombesin/pharmacology , Chloroquine/pharmacology , Drug Combinations , Excitatory Amino Acid Antagonists/pharmacology , Gastrin-Releasing Peptide/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Neurokinin-1 Receptor Antagonists/pharmacology , Neurons/drug effects , Peptide Fragments/pharmacology , Piperidines/pharmacology , Vesicular Glutamate Transport Protein 2/metabolism
11.
Pain ; 154(10): 2078-2087, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23791894

ABSTRACT

Eugenol and carvacrol, from the spices clove and oregano, respectively, are agonists of TRPV3, which is implicated in transduction of warmth and possibly heat pain. We investigated the temporal dynamics of lingual irritation elicited by these agents, and their effects on innocuous warmth and heat pain, using a half-tongue method in human subjects. The irritant sensation elicited by both eugenol and carvacrol decreased across repeated applications at a 1-minute interstimulus interval (self-desensitization) which persisted for at least 10 minutes. Both agents also cross-desensitized capsaicin-evoked irritation. Eugenol and carvacrol significantly increased the magnitude of perceived innocuous warmth (44 °C) for >10 minutes, and briefly (<5 minutes) enhanced heat pain elicited by a 49 °C stimulus. Similar albeit weaker effects were observed when thermal stimuli were applied after the tongue had been desensitized by repeated application of eugenol or carvacrol, indicating that the effect is not due solely to summation of chemoirritant and thermal sensations. Neither chemical affected sensations of innocuous cool or cold pain. A separate group of subjects was asked to subdivide eugenol and carvacrol irritancy into subqualities, the most frequently reported being numbing and warmth, with brief burning, stinging/pricking, and tingle, confirming an earlier study. Eugenol, but not carvacrol, reduced detection of low-threshold mechanical stimuli. Eugenol and carvacrol enhancement of innocuous warmth may involve sensitization of thermal gating of TRPV3 expressed in peripheral warm fibers. The brief heat hyperalgesia following eugenol may involve a TRPV3-mediated enhancement of thermal gating of TRPV1 expressed in lingual polymodal nociceptors.


Subject(s)
Eugenol/toxicity , Hot Temperature/adverse effects , Irritants/toxicity , Monoterpenes/toxicity , Pain/chemically induced , Tongue/drug effects , Adolescent , Adult , Cymenes , Eugenol/administration & dosage , Female , Humans , Irritants/administration & dosage , Male , Middle Aged , Monoterpenes/administration & dosage , Mouth/drug effects , Mouth/physiology , Pain/physiopathology , Thermosensing/drug effects , Thermosensing/physiology , Tongue/physiology , Young Adult
12.
Neurosci Lett ; 543: 37-41, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23562513

ABSTRACT

Many patients suffer from trigeminal neuralgia and other types of orofacial pain that are poorly treated, necessitating preclininal animal models for development of mechanisms-based therapies. The present study assessed capsaicin avoidance and other nocifensive behavioral responses in three models of orofacial nerve injury in rats: chronic constriction injury (CCI) of the mental nerves, partial tight ligation of mental nerves, and CCI of lingual nerves. We additionally investigated if nerve injury resulted in enhanced capsaicin-evoked activation of neurons in trigeminal caudalis (Vc) or nucleus of the solitary tract (NTS) based on expression of Fos-like immunoreactivity (FLI). Mental nerve CCI resulted in an enhancement of capsaicin avoidance in a two-bottle preference paradigm, while neither mental nerve injury produced thermal hyperalgesia or mechanical allodynia. CCI of lingual nerves did not affect capsaicin avoidance. Counts of FLI in Vc were significantly higher in the lingual sham and mental nerve CCI groups compared to mental shams; FLI counts in NTS did not differ among groups. Mental nerve CCI may have induced central sensitization of chemical nociception since increased capsaicin avoidance was accompanied by greater activation of Vc neurons in response to oral capsaicin.


Subject(s)
Avoidance Learning , Capsaicin/pharmacology , Facial Pain/psychology , Hyperalgesia/psychology , Trigeminal Nerve Injuries/physiopathology , Animals , Constriction, Pathologic , Facial Pain/physiopathology , Hot Temperature , Hyperalgesia/physiopathology , Ligation , Lingual Nerve Injuries/physiopathology , Lingual Nerve Injuries/psychology , Male , Neurons/physiology , Pain Measurement , Physical Stimulation , Rats , Rats, Sprague-Dawley , Solitary Nucleus/physiopathology , Touch , Trigeminal Nerve Injuries/psychology , Trigeminal Nuclei/physiopathology
13.
Anesth Analg ; 116(4): 932-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23337417

ABSTRACT

BACKGROUND: Propofol (2,6-diisopropylphenol) is an IV anesthetic used for general anesthesia. Recent evidence suggests that propofol-anesthetized patients experience less postoperative pain, and that propofol has analgesic properties when applied topically. We presently investigated the antinociceptive effects of topical propofol using behavioral and single-unit electrophysiological methods in rats. METHODS: In behavioral experiments with rats, we assessed the effect of topical hindpaw application of propofol (1%-25%) on heat and mechanically evoked paw withdrawals. In electrophysiological experiments, we recorded from lumbar dorsal horn wide dynamic range (WDR)-type neurons in pentobarbital-anesthetized rats. We assessed the effect of topical application of propofol to the ipsilateral hindpaw on neuronal responses elicited by noxious heat, cold, and mechanical stimuli. We additionally tested whether propofol blocks heat sensitization of paw withdrawals and WDR neuronal responses induced by topical application of allyl isothiocyanate (AITC; mustard oil). RESULTS: Topical application of propofol (1%-25%) significantly increased the mean latency of the thermally evoked hindpaw withdrawal reflex on the treated (but not opposite) side in a concentration-dependent manner, with no effect on mechanically evoked hindpaw withdrawal thresholds. Propofol also prevented shortening of paw withdrawal latency induced by AITC. In electrophysiological experiments, topical application of 10% and 25% propofol, but not 1% propofol or vehicle (10% intralipid), to the ipsilateral hindpaw significantly attenuated the magnitude of responses of WDR neurons to noxious heating of glabrous hindpaw skin with no significant change in thermal thresholds. Maximal suppression of noxious heat-evoked responses was achieved 15 minutes after application followed by recovery to the pre-propofol baseline by 30 minutes. Responses to skin cooling or graded mechanical stimuli were not significantly affected by any concentration of propofol. Topical application of AITC enhanced the noxious heat-evoked response of dorsal horn neurons. This enhancement of heat-evoked responses was attenuated when 10% propofol was applied topically after application of AITC. CONCLUSIONS: The results indicate that topical propofol inhibits responses of WDR neurons to noxious heat consistent with analgesia, and reduced AITC sensitization of WDR neurons consistent with an antihyperalgesic effect. These results are consistent with clinical studies demonstrating reduced postoperative pain in surgical patients anesthetized with propofol. The mechanism of analgesic action of topical propofol is not clear, but may involve desensitization of TRPV1 or TRPA1 receptors expressed in peripheral nociceptive nerve endings, engagement of endocannabinoids, or activation of peripheral γ-aminobutyric acid A receptors.


Subject(s)
Analgesics , Anesthetics, Intravenous/therapeutic use , Hyperalgesia/drug therapy , Posterior Horn Cells/drug effects , Propofol/therapeutic use , Administration, Topical , Anesthetics, Intravenous/administration & dosage , Animals , Behavior, Animal/drug effects , Cold Temperature , Electrophysiological Phenomena/drug effects , Functional Laterality/physiology , Hot Temperature , Male , Pain Threshold/drug effects , Propofol/administration & dosage , Rats , Rats, Sprague-Dawley
14.
J Neurophysiol ; 109(3): 742-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23155177

ABSTRACT

Recent studies support roles for neurokinin-1 (NK-1) and gastrin-releasing peptide (GRP) receptor-expressing spinal neurons in itch. We presently investigated expression of substance P (SP) and GRP in pruritogen-responsive primary sensory neurons and roles for these neuropeptides in itch signaling. Responses of dorsal root ganglion (DRG) cells to various pruritogens were observed by calcium imaging. DRG cells were then processed for SP, GRP, and isolectin B-4 (IB4; a marker for nonpeptidergic neurons) immunofluorescence. Of pruritogen-responsive DRG cells, 11.8-26.8%, 21.8-40.0%, and 21.4-26.8% were immunopositive for SP, GRP, and IB4, respectively. In behavioral studies, both systemic and intrathecal administration of a NK-1 receptor antagonist significantly attenuated scratching evoked by chloroquine and a protease-activated receptor 2 agonist, SLIGRL, but not histamine, bovine adrenal medulla peptide 8-22 (BAM8-22), or serotonin. Systemic or intrathecal administration of a GRP receptor antagonist attenuated scratching evoked by chloroquine and SLIGRL but not BAM8-22 or histamine. The GRP receptor antagonist enhanced scratching evoked by serotonin. These results indicate that SP and GRP expressed in primary sensory neurons are partially involved as neurotransmitters in histamine-independent itch signaling from the skin to the spinal cord.


Subject(s)
Gastrin-Releasing Peptide/metabolism , Pruritus/metabolism , Sensory Receptor Cells/metabolism , Substance P/metabolism , Animals , Calcium/metabolism , Chloroquine/pharmacology , Ganglia, Spinal/metabolism , Gastrin-Releasing Peptide/therapeutic use , Histamine/pharmacology , Male , Mice , Mice, Inbred C57BL , Neurokinin-1 Receptor Antagonists , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Pruritus/chemically induced , Pruritus/drug therapy , Receptors, Bombesin/antagonists & inhibitors , Sensory Receptor Cells/drug effects , Serotonin/pharmacology , Signal Transduction/drug effects , Substance P/therapeutic use
15.
Pain ; 153(9): 1890-1897, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22770638

ABSTRACT

Many acute stressors reduce pain, a phenomenon called stress-induced antinociception (SIA). Stress also is associated with increased scratching in chronic itch conditions. We investigated effects of acute stressors on facial itch and pain using a recently introduced rat model. Under baseline (no-swim) conditions, intradermal (id) cheek microinjection of the pruritogen serotonin (5-HT) selectively elicited hindlimb scratch bouts, whereas the algogen mustard oil (allyl isothiocyanate [AITC]) selectively elicited ipsilateral forepaw swipes, directed to the cheek injection site. To test effects of swim stress, rats received id cheek microinjection of 5-HT (1%), AITC (10%), or vehicle, and were then subjected to one of the following swim conditions: (1) weak SIA (W-SIA), (2) naltrexone-sensitive SIA (intermediate or I-SIA), or (3) naltrexone-insensitive SIA (strong or S-SIA). After the swim, we recorded the number of hindlimb scratch bouts and forelimb swipes directed to the cheek injection site, as well as facial grooming by both forepaws. Under S-SIA, AITC-evoked swiping and 5-HT-evoked scratching were both reduced. I-SIA reduced AITC-evoked swiping with no effect on 5-HT-evoked scratching. Facial grooming immediately post-swim was suppressed by S-SIA, but not I- or W-SIA. W-SIA tended to equalize scratching and swiping elicited by 5-HT and AITC compared with no-swim controls, suggesting altered itch and pain processing. Exercise (wheel-running), novelty, cold exposure, and fear (shaker table), key components of swim stress, differentially affected tail-flick latencies and 5-HT-evoked swiping and scratching behavior. Thus, itch and pain can be simultaneously suppressed by a combination of acute stress-related factors via an opioid-independent mechanism.


Subject(s)
Nociception/physiology , Pain/physiopathology , Pruritus/physiopathology , Stress, Psychological/physiopathology , Animals , Behavior, Animal , Grooming/physiology , Injections, Intradermal , Irritants/administration & dosage , Isothiocyanates/administration & dosage , Male , Naltrexone/administration & dosage , Narcotic Antagonists/administration & dosage , Rats , Rats, Sprague-Dawley , Serotonin/administration & dosage
16.
Neuropharmacology ; 63(4): 743-9, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22683515

ABSTRACT

Cannabinoids suppress nocifensive behaviors in rodents. We presently investigated peripheral endocannabinoid modulation of itch- and pain-related behaviors elicited from facial vs. spinally-innervated skin of rats. Intradermal (id) injection of the pruritogen serotonin (5-HT) elicited significantly more hindlimb scratch bouts, and longer cumulative time scratching, when injected in the rostral back compared to the cheek. Pretreatment of skin with inhibitors of degrading enzymes for the endocannabinoids anandamide (URB597) or 2-arachidonoylglycerol (JZL184) significantly reduced scratching elicited by 5-HT in the rostral back. These effects were prevented by co-treatment with antagonists of the CB1 (AM251) or CB2 receptor (AM630), implicating both receptor subtypes in endocannabinoid suppression of scratching in spinally-innervated skin. Conversely, pretreatment with either enzyme inhibitor, or with AM630 alone, increased the number of scratch bouts elicited by id 5-HT injection in the cheek. Moreover, pretreatment with JZL184 also significantly increased pain-related forelimb wipes directed to the cheek following id injection of the algogen, allyl isothiocyanate (AITC; mustard oil). Thus, peripheral endocannabinoids have opposite effects on itch-related scratching behaviors in trigeminally- vs. spinally-innervated skin. These results suggest that increasing peripheral endocannabinoid levels represents a promising therapeutic approach to treat itch arising from the lower body, but caution that such treatment may not relieve, and may even exacerbate, itch and pain arising from trigeminally-innervated skin of the face or scalp.


Subject(s)
Dermatitis, Contact/metabolism , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Skin/metabolism , Spinal Nerves/metabolism , Trigeminal Nerve/metabolism , Animals , Back , Behavior, Animal/drug effects , Cannabinoid Receptor Agonists/therapeutic use , Cannabinoid Receptor Antagonists/adverse effects , Dermatitis, Contact/drug therapy , Dermatitis, Contact/physiopathology , Dermatitis, Contact/prevention & control , Disease Models, Animal , Endocannabinoids/agonists , Endocannabinoids/antagonists & inhibitors , Face , Facial Pain/etiology , Facial Pain/prevention & control , Injections, Intradermal , Male , Molecular Targeted Therapy , Pruritus/etiology , Pruritus/prevention & control , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Skin/drug effects , Skin/innervation , Spinal Nerves/drug effects , Trigeminal Nerve/drug effects
17.
Eur J Neurosci ; 36(3): 2311-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22626250

ABSTRACT

The relief of itch by scratching is thought to involve inhibition of pruritogen-responsive neurons in the spinal cord. We recorded the responses of superficial dorsal horn neurons in mice to intradermal injection of the pruritogens chloroquine and histamine. Scratching within an area 5-17 mm distant from the injection site, outside of the units' mechanoreceptive fields (off-site), significantly inhibited chloroquine-evoked and histamine-evoked responses without affecting capsaicin-evoked firing. This is consistent with observations that scratching at a distance from a site of itch is antipruritic. In contrast, scratching directly at the injection site (within the receptive field; on-site) had no effect on chloroquine-evoked neuronal firing, but enhanced the same neurons' responses to intradermal injection of the algogen capsaicin. Moreover, neuronal responses to histamine were enhanced during on-site scratching, and this was followed by suppression of firing below baseline levels after termination of scratching. Scratching thus inhibits pruritogen-responsive neurons in a manner that depends on the input modality (i.e. pain vs. histamine-dependent or histamine-independent itch) and skin location.


Subject(s)
Evoked Potentials/physiology , Posterior Horn Cells/physiopathology , Pruritus/physiopathology , Touch/physiology , Animals , Capsaicin/pharmacology , Chloroquine/pharmacology , Evoked Potentials/drug effects , Histamine/pharmacology , Male , Mice , Mice, Inbred C57BL , Pruritus/chemically induced , Reflex/drug effects , Reflex/physiology
18.
Acta Derm Venereol ; 92(5): 515-20, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22513524

ABSTRACT

Intradermal facial injections of pruritogens or algogens elicit distinct behavioral hindlimb scratch or forelimb wiping responses in rodents. We systematically investigated the parameters and opioid modulation of these evoked behaviors and spontaneous facial grooming in rats. Serotonin (5-HT) elicited hindlimb scratch bouts with few wipes. Scratching was attenuated by the µ-opiate antagonist naltrexone but not morphine. In contrast, cheek injection of mustard oil (allyl-isothiocyanate (AITC)) elicited ipsilateral forelimb wipes but little hindlimb scratching. AITC-evoked wiping was significantly attenuated by morphine but not naltrexone. Spontaneous facial grooming by the forepaws was attenuated by naltrexone, whereas morphine did not affect grooming behavior before or after cheek injections of 5-HT or AITC. These data validate that the rodent "cheek" model discriminates between itch- and pain-related behaviors. Naltrexone sensitivity of facial grooming and 5-HT-evoked scratch-ing suggests a common functionality. Forelimb wipes may represent a nocifensive response akin to rubbing an injury to relieve pain.


Subject(s)
Analgesics, Opioid/pharmacology , Antipruritics/pharmacology , Grooming/drug effects , Morphine/pharmacology , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Pain/prevention & control , Pruritus/prevention & control , Animals , Disease Models, Animal , Face , Injections, Intradermal , Male , Mustard Plant , Pain/chemically induced , Pain/psychology , Plant Oils , Pruritus/chemically induced , Pruritus/psychology , Rats , Rats, Sprague-Dawley , Serotonin , Time Factors
19.
J Invest Dermatol ; 132(7): 1886-91, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22418875

ABSTRACT

Lightly touching normal skin near a site of itch can elicit itch sensation, a phenomenon known as alloknesis. To investigate the neural mechanisms of alloknesis, we have developed an animal model. Low-threshold mechanical stimulation of the skin normally does not elicit any response in naive C57/BL6 mice. Following acute intradermal (i.d.) injection of histamine in the rostral back, mechanical stimulation 7 mm from the injection site elicited discrete hindlimb scratch bouts directed toward the stimulus. This began at 10 minutes and peaked 20-40 minutes post histamine injection, declining over the next hour. Histamine itself elicited bouts of scratching not associated with the mechanical stimulus, which ceased after 30 minutes. Histamine- and touch-evoked scratching was inhibited by the µ-opiate antagonist naltrexone. Touch-evoked scratching was observed following i.d. 5-HT (5-hydroxytryptamine), a protease-activated receptor (PAR)-4 agonist, and an MrgprC11 agonist BAM8-22, but not chloroquine or a PAR-2 agonist. The histamine H1 receptor antagonist terfenadine prevented scratching and alloknesis evoked by histamine, but not 5-HT, a PAR-4 agonist or an MrgprC11 agonist. In mice with experimental dry skin, there was a time-dependent increase in spontaneous and touch-evoked scratching. This animal model appears to be useful to investigate neural mechanisms of itch and alloknesis.


Subject(s)
Disease Models, Animal , Pruritus/etiology , Touch , Animals , Histamine/pharmacology , Mice , Mice, Inbred C57BL , Naltrexone/pharmacology , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Receptors, Thrombin/physiology
20.
J Neurophysiol ; 106(3): 1078-88, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21653727

ABSTRACT

In the present study, we investigated whether intradermal cheek injection of pruritogens or algogens differentially elicits hindlimb scratches or forelimb wipes in Sprague-Dawley rats, as recently reported in mice. We also investigated responses of primary sensory trigeminal ganglion (TG) and dorsal root ganglion (DRG) cells, as well as second-order neurons in trigeminal subnucleus caudalis (Vc), to pruritic and algesic stimuli. 5-HT was the most effective chemical to elicit dose-dependent bouts of hindlimb scratches directed to the cheek, with significantly less forelimb wiping, consistent with itch. Chloroquine also elicited significant scratching but not wiping. Allyl isothiocyanate (AITC; mustard oil) elicited dose-dependent wiping with no significant scratching. Capsaicin elicited equivalent numbers of scratch bouts and wipes, suggesting a mixed itch and pain sensation. By calcium imaging, ∼ 6% of cultured TG and DRG cells responded to 5-HT. The majority of 5-HT-sensitive cells also responded to chloroquine, AITC, and/or capsaicin, and one-third responded to histamine. Using a chemical search strategy, we identified single units in Vc that responded to intradermal cheek injection of 5-HT. Most were wide dynamic range (WDR) or nociceptive specific (NS), and a few were mechanically insensitive. The large majority additionally responded to AITC and/or capsaicin and thus were not pruritogen selective. These results suggest that primary and second-order neurons responsive to pruritogens and algogens may utilize a population coding mechanism to distinguish between itch and pain, sensations that are behaviorally manifested by distinct hindlimb scratching and forelimb wiping responses.


Subject(s)
Behavior, Animal/physiology , Pain/physiopathology , Pruritus/physiopathology , Sensory Receptor Cells/physiology , Trigeminal Caudal Nucleus/physiology , Animals , Behavior, Animal/drug effects , Face/physiology , Injections, Intradermal , Male , Pain/chemically induced , Pruritus/chemically induced , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , Serotonin/administration & dosage , Serotonin/toxicity , Trigeminal Caudal Nucleus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL