Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Reprod Toxicol ; 128: 108631, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830453

ABSTRACT

Epidemiological evidence suggests the potential for air pollutants to induce male reproductive toxicity. In experimental studies, exposure to ozone during sensitive windows in the sperm lifecycle has been associated with impaired sperm motility. Subsequently, we sought to investigate the effects of episodic exposure to ozone during sperm maturation in the rat. Long-Evans rats were exposed to either filtered air or ozone (0.4 or 0.8 ppm) for five non-consecutive days over two weeks. Ozone exposure did not impact male reproductive organ weights or sperm motility ∼24 hours following the final exposure. Furthermore, circulating sex hormones remained unchanged despite increased T3 and T4 in the 0.8 ppm group. While there was indication of altered adrenergic signaling attributable to ozone exposure in the testis, there were minimal impacts on small non-coding RNAs detected in cauda sperm. Only two piwi-interacting RNAs (piRNAs) were altered in the mature sperm of ozone-exposed rats (piR-rno-346434 and piR-rno-227431). Data across all rats were next analyzed to identify any non-coding RNAs that may be correlated with reduced sperm motility. A total of 7 microRNAs (miRNAs), 8 RNA fragments, and 1682 piRNAs correlated well with sperm motility. Utilizing our exposure paradigm herein, we were unable to substantiate the relationship between ozone exposure during maturation with sperm motility. However, these approaches served to identify a suite of non-coding RNAs that were associated with sperm motility in rats. With additional investigation, these RNAs may prove to have functional roles in the acquisition of motility or be unique biomarkers for male reproductive toxicity.

2.
Toxicol Lett ; 384: 105-114, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37517673

ABSTRACT

To reduce reliance on long-term in vivo studies, short-term data linking early molecular-based measurements to later adverse health effects is needed. Although transcriptional-based benchmark dose (BMDT) modeling has been used to estimate potencies and stratify chemicals based on potential to induce later-life effects, dose-responsive epigenetic alterations have not been routinely considered. Here, we evaluated the utility of microRNA (miRNA) profiling in mouse liver and blood, as well as in mouse primary hepatocytes in vitro, to indicate mechanisms of liver perturbation due to short-term exposure of the known rodent liver hepatotoxicant and carcinogen, furan. Benchmark dose modeling of miRNA measurements (BMDmiR) were compared to the referent transcriptional (BMDT) and apical (BMDA) estimates. These analyses indicate a robust dose response for 34 miRNAs to furan and involvement of p53-linked pathways in furan-mediated hepatotoxicity, supporting mRNA and apical measurements. Liver-sourced miRNAs were also altered in the blood and primary hepatocytes. Overall, these results indicate mechanistic involvement of miRNA in furan carcinogenicity and provide evidence of their potential utility as accessible biomarkers of exposure and disease.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Rodentia/genetics , Liver/metabolism , Hepatocytes/metabolism , Furans/toxicity , Furans/metabolism
3.
Environ Health Perspect ; 130(1): 17003, 2022 01.
Article in English | MEDLINE | ID: mdl-34989596

ABSTRACT

BACKGROUND: Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress. OBJECTIVES: We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort. METHODS: Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed. RESULTS: The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks. DISCUSSION: These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.


Subject(s)
Circulating MicroRNA , Liver Diseases , MicroRNAs , Polychlorinated Biphenyls , Cross-Sectional Studies , Humans , Polychlorinated Biphenyls/toxicity , Public Health
4.
Toxicol Sci ; 180(1): 1-16, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33367795

ABSTRACT

Drug-induced kidney injury (DIKI) is a major concern in both drug development and clinical practice. There is an unmet need for biomarkers of glomerular damage and more distal renal injury in the loop of Henle and the collecting duct (CD). A cross-laboratory program to identify and characterize urinary microRNA (miRNA) patterns reflecting tissue- or pathology-specific DIKI was conducted. The overall goal was to propose miRNA biomarker candidates for DIKI that could supplement information provided by protein kidney biomarkers in urine. Rats were treated with nephrotoxicants causing injury to distinct nephron segments: the glomerulus, proximal tubule, thick ascending limb (TAL) of the loop of Henle and CD. Meta-analysis identified miR-192-5p as a potential proximal tubule-specific urinary miRNA candidate. This result was supported by data obtained in laser capture microdissection nephron segments showing that miR-192-5p expression was enriched in the proximal tubule. Discriminative miRNAs including miR-221-3p and -222-3p were increased in urine from rats treated with TAL versus proximal tubule toxicants in accordance with their expression localization in the kidney. Urinary miR-210-3p increased up to 40-fold upon treatment with TAL toxicants and was also enriched in laser capture microdissection samples containing TAL and/or CD versus proximal tubule. miR-23a-3p was enriched in the glomerulus and was increased in urine from rats treated with doxorubicin, a glomerular toxicant, but not with toxicants affecting other nephron segments. Taken together these results suggest that urinary miRNA panels sourced from specific nephron regions may be useful to discriminate the pathology of toxicant-induced lesions in the kidney, thereby contributing to DIKI biomarker development needs for industry, clinical, and regulatory use.


Subject(s)
MicroRNAs , Pharmaceutical Preparations , Animals , Biomarkers , Kidney , MicroRNAs/genetics , Nephrons , Rats
5.
Mol Metab ; 42: 101094, 2020 12.
Article in English | MEDLINE | ID: mdl-33031959

ABSTRACT

OBJECTIVE: The importance of the placenta in mediating the pre- and post-natal consequences of fetal growth restriction has been increasingly recognized. However, the influence of placental sexual dimorphism on driving these outcomes has received little attention. The purpose of this study was to characterize how sex contributes to the relationship between placental metabolism and fetal programming utilizing a novel rodent model of growth restriction. METHODS: Fetal growth restriction was induced by maternal inhalation of 0.8 ppm ozone (4 h/day) during implantation receptivity (gestation days [GDs] 5 and 6) in Long-Evans rats. Control rats were exposed to filtered air. At GD 21, placental and fetal tissues were obtained for metabolic and genomic assessments. RESULTS: Growth-restricted male placentae exhibited increased mitochondrial biogenesis, increased oxygen consumption, and reduced nutrient storage. Male growth-restricted fetuses also had evidence of reduced adiposity and downregulation of hepatic metabolic signaling. In contrast, placentae from growth-restricted females had elevated markers of autophagy accompanied by an observed protection against hepatic metabolic perturbations. Despite this, growth restriction in females induced a greater number of hypothalamic gene and pathway alterations compared to growth-restricted males. CONCLUSIONS: Increases in mitochondrial metabolism in growth-restricted male placentae likely initiates a sequela of adaptations that promote poor nutrient availability and adiposity. Divergently, the female placenta expresses protective mechanisms that may serve to increase nutrient availability to support fetal metabolic development. Collectively, this work emphasizes the importance of sex in mediating alterations in placental metabolism and fetal programming.


Subject(s)
Fetal Growth Retardation/metabolism , Fetus/metabolism , Placenta/metabolism , Adiposity , Animals , Female , Fetal Development , Fetal Growth Retardation/physiopathology , Male , Mitochondria/metabolism , Ozone/adverse effects , Ozone/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Long-Evans , Sex Characteristics , Sex Factors
6.
Toxicol Rep ; 7: 805-815, 2020.
Article in English | MEDLINE | ID: mdl-32642447

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNA species that play key roles in post-transcriptional regulation of gene expression. MiRNAs also serve as a promising source of early biomarkers for different environmental exposures and health effects, although there is limited information linking miRNA changes to specific target pathways. In this study, we measured liver miRNAs in male B6C3F1 mice exposed to a known chemical activator of the peroxisome proliferator-activated receptor alpha (PPARα) pathway, di(2-ethylhexyl) phthalate (DEHP), for 7 and 28 days at concentrations of 0, 750, 1500, 3000, or 6000 ppm in feed. At the highest dose tested, DEHP altered 61 miRNAs after 7 days and 171 miRNAs after 28 days of exposure, with 48 overlapping miRNAs between timepoints. Analysis of these 48 common miRNAs indicated enrichment in PPARα-related targets and other pathways related to liver injury and cancer. Four of the 10 miRNAs exhibiting a clear dose trend were linked to the PPARα pathway: mmu-miRs-125a-5p, -182-5p, -20a-5p, and -378a-3p. mmu-miRs-182-5p and -378a-3p were subsequently measured using digital drop PCR across a dose range for DEHP and two related phthalates with weaker PPARα activity, di-n-octyl phthalate and n-butyl benzyl phthalate, following 7-day exposures. Analysis of mmu-miRs-182-5p and -378a-3p by transcriptional benchmark dose analysis correctly identified DEHP as having the greatest potency. However, benchmark dose estimates for DEHP based on these miRNAs (average 163; range 126-202 mg/kg-day) were higher on average than values for PPARα target genes (average 74; range 29-183 mg/kg-day). These findings identify putative miRNA biomarkers of PPARα pathway activity and suggest that early miRNA changes may be used to stratify chemical potency.

7.
Toxicol Sci ; 149(2): 312-25, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26519955

ABSTRACT

Current strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor alpha (PPARα). Male B6C3F1 mice were exposed for 7 days to di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP), which vary in PPARα activity and liver tumorigenicity. Each phthalate increased expression of select PPARα target genes at 7 days, while only DEHP significantly increased liver cell proliferation labeling index (LI). Transcriptional benchmark dose (BMDT) estimates for dose-related genomic markers stratified phthalates according to hypothetical tumorigenic potencies, unlike BMDs for non-genomic endpoints (relative liver weights or proliferation). The 7-day BMDT values for Acot1 as a surrogate measure for PPARα activation were 29, 370, and 676 mg/kg/day for DEHP, DNOP, and BBP, respectively, distinguishing DEHP (liver tumor BMD of 35 mg/kg/day) from non-tumorigenic DNOP and BBP. Effect thresholds were generated using linear regression of DEHP effects at 7 days and 2-year tumor incidence values to anchor early response molecular indicators and a later phenotypic outcome. Thresholds varied widely by marker, from 2-fold (Pdk4 and proliferation LI) to 30-fold (Acot1) induction to reach hypothetical tumorigenic expression levels. These findings highlight key issues in defining thresholds for biological adversity based on molecular changes.


Subject(s)
Liver Neoplasms, Experimental/chemically induced , PPAR alpha/physiology , Animals , Benchmarking , Body Weight/drug effects , Cell Proliferation , Diethylhexyl Phthalate/toxicity , Dose-Response Relationship, Drug , Linear Models , Liver/metabolism , Liver/pathology , Male , Mice , Oxidative Stress , Phthalic Acids/toxicity , Polymerase Chain Reaction
8.
Exp Mol Pathol ; 91(1): 434-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21497600

ABSTRACT

PURPOSE: Uterine leiomyomas (fibroids) are benign smooth muscle tumors commonly found among reproductive-aged women. Though benign, these tumors are the leading indication for hysterectomies in the United States and cause significant morbidity. Despite the importance of this tumor in women's health, relatively little is known about the molecular etiology. METHODS: In this study, we used the Affymetrix 100K single nucleotide polymorphism (SNP) chip to assess whether the pattern and frequency of genome-wide loss of heterozygosity (LOH) and copy number amplifications is associated with clinical heterogeneity. RESULTS: Thirty-seven tumors with varying sizes and histology from eleven patients were analyzed. LOH was observed in 4/37 tumors (10.8%) and significantly associated with large-sized tumors (p<0.0014). Two tumors revealed hemizygosity on chromosome 7q, a region that has been consistently reported to have LOH. Additionally, we detected one novel region of LOH, 16p13.11 in one tumor (2.7%). Copy number amplifications were observed on all chromosomes; however, most were low-level amplifications and only detected in a single tumor. One region of amplification at 3p26.3 was detected in four tumors. CONCLUSIONS: Despite the use of a high-density SNP platform, our results suggest that genome-wide LOH and copy number amplifications are infrequent events and generally do not determine clinical and histologic characteristics of this disease.


Subject(s)
DNA Copy Number Variations , Gene Dosage , Leiomyoma/genetics , Loss of Heterozygosity , Polymorphism, Single Nucleotide , Uterine Neoplasms/genetics , Chromosomes, Human, Pair 16 , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 7 , Female , Gene Amplification , Genomics , Humans , Leiomyoma/pathology , Oligonucleotide Array Sequence Analysis , Uterine Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...