Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceutics ; 14(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35056925

ABSTRACT

Psychoactive substances during pregnancy and lactation is a key problem in contemporary society, causing social, economic, and health disturbance. In 2010, about 30 million people used opioid analgesics for non-therapeutic purposes, and the prevalence of opioids use during pregnancy ranged from 1% to 21%, representing a public health problem. This study aimed to evaluate the long-lasting neurobehavioral and nociceptive consequences in adult offspring rats and mice exposed to morphine during intrauterine/lactation periods. Pregnant rats and mice were exposed subcutaneously to morphine (10 mg/kg/day) during 42 consecutive days (from the first day of pregnancy until the last day of lactation). Offspring were weighed on post-natal days (PND) 1, 5, 10, 15, 20, 30, and 60, and behavioral tasks (experiment 1) or nociceptive responses (experiment 2) were assessed at 75 days of age (adult life). Morphine-exposed female rats displayed increased spontaneous locomotor activity. More importantly, both males and female rats perinatally exposed to morphine displayed anxiety- and depressive-like behaviors. Morphine-exposed mice presented alterations in the nociceptive responses on the writhing test. This study showed that sex difference plays a role in pain threshold and that deleterious effects of morphine during pre/perinatal periods are nonrepairable in adulthood, which highlights the long-lasting clinical consequences related to anxiety, depression, and nociceptive disorders in adulthood followed by intrauterine and lactation morphine exposure.

2.
Biol Trace Elem Res ; 199(4): 1425-1436, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32564201

ABSTRACT

High amounts of aluminum (Al) are found in soil and water. It is highly bioavailable, which makes it an important agent of environmental imbalance. Moreover, Al is considered a neurotoxic agent that is associated with several neurodegenerative diseases. Thus, this study investigated the effects of long-term Al chloride (AlCl3) exposure on motor behavior, oxidative biochemistry, and cerebellar tissue parameters. For this, adult Wistar rats were divided into three groups: Al-D1 (8.3 mg kg-1 day-1), Al-D2 (5.2 mg kg-1 day-1), and control (distilled water); all groups were orally exposed for 60 days by intragastric gavage. After the exposure period, animals performed the open field, elevated plus maze, rotarod, and beam walking tests. Then, the blood and cerebellum were collected to evaluate Al levels and biochemical and morphological analyses, respectively. Our results demonstrate that animals exposed to Al doses presented a higher Al level in the blood. In the spontaneous locomotor activity, Al exposure groups had traveled a lower total distance when compared with the control group. There was no statistically significant difference (p > 0.05) between exposed and control groups when anxiogenic profile, forced locomotion, fine motor coordination/balance, pro-oxidative parameter, and density Purkinje cells were compared. Thus, aluminum exposure in equivalent doses to human consumption in urban regions did not promote significant changes in the cerebellum or motor parameters.


Subject(s)
Aluminum , Neurotoxicity Syndromes , Aluminum/toxicity , Aluminum Chloride , Animals , Locomotion , Rats , Rats, Wistar
3.
Ecotoxicol Environ Saf ; 206: 111139, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32861963

ABSTRACT

Aluminum (Al) is a neurotoxicant agent implicated in several behavioral, neuropathological and neurochemical changes associated with cognitive impairments. Nevertheless, mechanisms of damage and safety concentrations are still very discussed. Thus, the main purpose of this study was to investigate whether two aluminum low doses were able to produce deleterious effects on cognition of adult rats, including oxidative stress in hippocampus and prefrontal cortex, two important areas for cognition. For this, thirty adult Wistar rats were divided into three groups: Al1 (8.3 mg/kg/day), Al2 (32 mg/kg/day) and Control (Ultrapure Water), in which all three groups received their solutions containing or not AlCl3 by intragastric gavage for 60 days. After the experimental period, the short- and long-term memories were assessed by the object recognition test and step-down inhibitory avoidance. After euthanizing, prefrontal cortex and hippocampus samples were dissected for Al levels measurement and evaluation of oxidative biochemistry. Only Al2 increased Al levels in hippocampal parenchyma significantly; both concentrations did not impair short-term memory, while long-term memory was affected in Al1 and Al2. In addition, oxidative stress was observed in prefrontal and hippocampus in Al1 and Al2. Our results indicate that, in a translational perspective, humans are subjected to deleterious effects of Al over cognition even when exposed to low concentrations, by triggering oxidative stress and poor long-term memory performance.


Subject(s)
Aluminum Chloride/toxicity , Aluminum/toxicity , Hippocampus/drug effects , Neurotoxicity Syndromes , Prefrontal Cortex/drug effects , Aluminum/administration & dosage , Aluminum/analysis , Aluminum Chloride/administration & dosage , Aluminum Chloride/analysis , Animals , Hippocampus/chemistry , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Memory, Long-Term/drug effects , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/physiopathology , Oxidative Stress/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Rats , Rats, Wistar
4.
Oxid Med Cell Longev ; 2019: 2415243, 2019.
Article in English | MEDLINE | ID: mdl-31354903

ABSTRACT

The heavy and episodic EtOH drinking pattern, equivalent to weekend consumption, characterizes the binge-drinking pattern and promotes a misbalance of encephalic metabolic functions, concurring to neurodegeneration and cerebral dysfunction. And for being a legal drug, it has global public health and social relevance. In this way, we aimed to investigate the effects of physical training, in a treadmill, on the deleterious effects of EtOH on hippocampal functions, related to memory and learning. For this, we used 40 Wistar rats, divided into four groups: Control group, Trained group (trained animals with doses of distilled water), EtOH group (nontrained animals with doses of 3 g/kg/day of EtOH, 20% w/v), and Trained+EtOH group (trained animals exposed to EtOH). The physical exercise was performed by running on a treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in binge. After the experimental period, the animals were submitted to the object recognition task and Morris water maze test, and after being euthanized, the blood and hippocampus were collected for Trolox Equivalent Antioxidant Capacity (TEAC), Reduced Glutathione Content (GSH), and Nitrite and Lipid Peroxidation (LPO) level measurements. Our results showed that EtOH caused marked oxidative stress and mnemonic damage, and the physical exercise promoted neuroprotective effects, among them, the modulation of oxidative biochemistry in plasma (by restoring GSH levels) and in the hippocampus (by reducing LPO levels and increasing antioxidant parameters) and cognitive function improvement. Therefore, physical exercise can be an important prophylactic and therapeutic tool in order to ameliorate and even prevent the deleterious effects of EtOH on cognitive functions.


Subject(s)
Alcoholic Intoxication/therapy , Ethanol/adverse effects , Hippocampus/drug effects , Physical Conditioning, Animal/methods , Animals , Male , Oxidation-Reduction , Rats , Rats, Wistar
5.
Oxid Med Cell Longev ; 2019: 6802424, 2019.
Article in English | MEDLINE | ID: mdl-30911348

ABSTRACT

Ethanol (EtOH) binge drinking is characterized by high EtOH intake during few hours followed by withdrawal. Protection strategies against the damages generated by this binge are poorly explored. Thus, this study is aimed at investigating the protective role of treadmill physical exercise (PE) on the damage caused after repeated cycles of binge-like EtOH exposure in the oxidative biochemistry, morphology, and cerebellar function of rats from adolescence to adulthood. For this, animals were divided into four groups: control group (sedentary animals with doses of distilled water), exercised group (exercised animals with doses of distilled water), EtOH group (sedentary animals with doses of 3 g/kg/day of EtOH, 20% w/v), and exercised+EtOH group (exercised animals with previous mentioned doses of EtOH). The PE occurred on a running treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in a binge-like manner. After the EtOH protocol and PE, animals were submitted to open field and beam walking tests. In sequence, the cerebellums were collected for the biochemical and morphological analyses. Biochemical changes were analyzed by measurement of Trolox equivalent antioxidant capacity (TEAC), reduced glutathione content measurements (GSH), and measurement of nitrite and lipid peroxidation (LPO). In morphological analyses, Purkinje cell density evaluation and immunohistochemistry evaluation were measured by antimyelin basic protein (MBP) and antisynaptophysin (SYP). The present findings demonstrate that the binge drinking protocol induced oxidative biochemistry misbalance, from the decrease of TEAC levels and higher LPO related to tissue damage and motor impairment. In addition, we have shown for the first time that treadmill physical exercise reduced tissue and functional alterations displayed by EtOH exposure.


Subject(s)
Aging/pathology , Binge Drinking/pathology , Binge Drinking/physiopathology , Cerebellum/pathology , Cerebellum/physiopathology , Ethanol/adverse effects , Oxidative Stress , Physical Conditioning, Animal , Animals , Male , Motor Activity , Myelin Basic Protein/metabolism , Rats, Wistar , Synaptophysin/metabolism , Weight Gain
6.
Front Behav Neurosci ; 12: 88, 2018.
Article in English | MEDLINE | ID: mdl-29867389

ABSTRACT

Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

7.
Behav Brain Res ; 350: 99-108, 2018 09 17.
Article in English | MEDLINE | ID: mdl-29752970

ABSTRACT

Binge-like ethanol intake (BEI) is a socioeconomical problem among adolescents and increasingly affects women. BEI can leave a long-term imprint in the brain, but it is unknown if its effect on cognition and anxiety is cumulative on repeated binge-ethanol episodes. We now submitted female Wistar rats to repeated cycles of binge-like ethanol treatment by intragastrically administering ethanol (3.0 g/kg/day, 20% w/v ethanol; 3 days on/4 days off) starting at postnatal day 35 (PND35). To investigate the short-term effects of BEI during adolescence, rats underwent 1 or 4 cycles of BEI, being evaluated at PND37 and PND58, respectively: both groups displayed anxiety-like behavior in the open field and elevated plus-maze tests, as well as short-term memory deficits in the object recognition task; this was associated with transient decreases of BDNF levels and increases of GFAP levels in the hippocampus. To evaluate the short- and long-lasting effects of BEI in adulthood, rats were subjected to 8 cycles of BEI and evaluated after 7.5 h (PND86) or after 14 days of ethanol withdrawal (PND100). This caused a persistent anxiogenic profile whereas recognition memory was impaired on the short-term, but not 14 days post-administration. The reduced BDNF level observed shortly after BEI recovered upon withdrawal, whereas increased GFAP immunoreactivity was persistent up to 14 days post-administration in adulthood. These findings show that repeated binge-like ethanol episodes from adolescence to adulthood in female rats cause consistent and long-term alterations of anxiety and hippocampal astrogliosis, whereas they trigger a recognition memory deficit paralleled by lower hippocampal BDNF levels, both recovering upon ethanol withdrawal.


Subject(s)
Anxiety/etiology , Binge Drinking/physiopathology , Binge Drinking/psychology , Hippocampus/drug effects , Memory Disorders/etiology , Animals , Anxiety/physiopathology , Female , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/growth & development , Hippocampus/physiopathology , Memory Disorders/physiopathology , Rats, Wistar , Sexual Maturation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...