Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831039

ABSTRACT

Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.

2.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873117

ABSTRACT

Transcription Factors (TFs) influence gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Because genomic localization of TFs is in part driven by TF recognition of DNA sequence, variation in TF binding sites can disrupt TF-DNA associations and affect gene regulation. To identify variants that impact TF binding in human brain tissues, we quantified allele bias for 93 TFs analyzed with ChIP-seq experiments of multiple structural brain regions from two donors. Using graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signal between alleles at heterozygous variants within each tissue sample from each donor. Comparison of results from different brain regions within donors and the same regions between donors provided measures of allele bias reproducibility. We identified thousands of DNA variants that show reproducible bias in ChIP-seq for at least one TF. We found that alleles that are rarer in the general population were more likely than common alleles to exhibit large biases, and more frequently led to reduced TF binding. Combining ChIP-seq with RNA-seq, we identified TF-allele interaction biases with RNA bias in a phased allele linked to 6,709 eQTL variants identified in GTEx data, 3,309 of which were found in neural contexts. Our results provide insights into the effects of both common and rare variation on gene regulation in the brain. These findings can facilitate mechanistic understanding of cis-regulatory variation associated with biological traits, including disease.

3.
Transl Psychiatry ; 13(1): 118, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031222

ABSTRACT

The frontal pole (Brodmann area 10, BA10) is the largest cytoarchitectonic region of the human cortex, performing complex integrative functions. BA10 undergoes intensive adolescent grey matter pruning prior to the age of onset for bipolar disorder (BP) and schizophrenia (SCHIZ), and its dysfunction is likely to underly aspects of their shared symptomology. In this study, we investigated the role of BA10 neurotransmission-related gene expression in BP and SCHIZ. We performed qPCR to measure the expression of 115 neurotransmission-related targets in control, BP, and SCHIZ postmortem samples (n = 72). We chose this method for its high sensitivity to detect low-level expression. We then strengthened our findings by performing a meta-analysis of publicly released BA10 microarray data (n = 101) and identified sources of convergence with our qPCR results. To improve interpretation, we leveraged the unusually large database of clinical metadata accompanying our samples to explore the relationship between BA10 gene expression, therapeutics, substances of abuse, and symptom profiles, and validated these findings with publicly available datasets. Using these convergent sources of evidence, we identified 20 neurotransmission-related genes that were differentially expressed in BP and SCHIZ in BA10. These results included a large diagnosis-related decrease in two important therapeutic targets with low levels of expression, HTR2B and DRD4, as well as other findings related to dopaminergic, GABAergic and astrocytic function. We also observed that therapeutics may produce a differential expression that opposes diagnosis effects. In contrast, substances of abuse showed similar effects on BA10 gene expression as BP and SCHIZ, potentially amplifying diagnosis-related dysregulation.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Adolescent , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Schizophrenia/metabolism , Frontal Lobe/metabolism , Gene Expression , Synaptic Transmission/genetics
4.
Transl Psychiatry ; 12(1): 159, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422091

ABSTRACT

Suicides have increased to over 48,000 deaths yearly in the United States. Major depressive disorder (MDD) is the most common diagnosis among suicides, and identifying those at the highest risk for suicide is a pressing challenge. The objective of this study is to identify changes in gene expression associated with suicide in brain and blood for the development of biomarkers for suicide. Blood and brain were available for 45 subjects (53 blood samples and 69 dorsolateral prefrontal cortex (DLPFC) samples in total). Samples were collected from MDD patients who died by suicide (MDD-S), MDDs who died by other means (MDD-NS) and non-psychiatric controls. We analyzed gene expression using RNA and the NanoString platform. In blood, we identified 14 genes which significantly differentiated MDD-S versus MDD-NS. The top six genes differentially expressed in blood were: PER3, MTPAP, SLC25A26, CD19, SOX9, and GAR1. Additionally, four genes showed significant changes in brain and blood between MDD-S and MDD-NS; SOX9 was decreased and PER3 was increased in MDD-S in both tissues, while CD19 and TERF1 were increased in blood but decreased in DLPFC. To our knowledge, this is the first study to analyze matched blood and brain samples in a well-defined population of MDDs demonstrating significant differences in gene expression associated with completed suicide. Our results strongly suggest that blood gene expression is highly informative to understand molecular changes in suicide. Developing a suicide biomarker signature in blood could help health care professionals to identify subjects at high risk for suicide.


Subject(s)
Depressive Disorder, Major , Suicide , Amino Acid Transport Systems/metabolism , Biomarkers/metabolism , Brain/metabolism , Calcium-Binding Proteins , Depressive Disorder, Major/psychology , Humans , Prefrontal Cortex/metabolism , Suicide/psychology
5.
eNeuro ; 6(2)2019.
Article in English | MEDLINE | ID: mdl-31119189

ABSTRACT

Neuronal cholinergic circuits have been implicated in cognitive function and neurological disease, but the role of cholinergic signaling in other cellular populations within the brain has not been as fully defined. Here, we show that cholinergic signaling mechanisms are involved in mediating the function of the choroid plexus, the brain structure responsible for generating CSF and releasing various factors into the brain. The choroid plexus was found to express markers of endogenous cholinergic signaling, including multiple nicotinic acetylcholine receptor (nAChR) subtypes in a region-specific manner, and application of nicotine was found to induce cellular activation, as evidenced by calcium influx in primary tissue. During intravenous nicotine self-administration in male rats, nicotine increased expression of transthyretin, a protein selectively produced and released by the choroid plexus, and microRNA-204 (mir-204), a transcript found in high levels in the choroid plexus and CSF. Finally, human choroid plexus tissue from both sexes was found to exhibit similar nAChR, transthyretin and mir-204 expression profiles, supporting the translational relevance of the findings. Together, these studies demonstrate functionally active cholinergic signaling mechanisms in the choroid plexus, the resulting effects on transthyretin and mir-204 expression, and reveal the direct mechanism by which nicotine modulates function of this tissue.


Subject(s)
Choroid Plexus , MicroRNAs , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Prealbumin , Receptors, Nicotinic , Signal Transduction/drug effects , Animals , Choroid Plexus/drug effects , Choroid Plexus/metabolism , Female , Humans , Male , MicroRNAs/drug effects , MicroRNAs/metabolism , Middle Aged , Prealbumin/drug effects , Prealbumin/metabolism , Rats , Rats, Wistar , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism
6.
Genome Med ; 9(1): 72, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754123

ABSTRACT

BACKGROUND: Psychiatric disorders are multigenic diseases with complex etiology that contribute significantly to human morbidity and mortality. Although clinically distinct, several disorders share many symptoms, suggesting common underlying molecular changes exist that may implicate important regulators of pathogenesis and provide new therapeutic targets. METHODS: We performed RNA sequencing on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar disorder, or major depressive disorder, and from 24 control subjects. We identified differentially expressed genes and validated the results in an independent cohort. Anterior cingulate cortex samples were also subjected to metabolomic analysis. ChIP-seq data were used to characterize binding of the transcription factor EGR1. RESULTS: We compared molecular signatures across the three brain regions and disorders in the transcriptomes of post-mortem human brain samples. The most significant disease-related differences were in the anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional changes were assessed in an independent cohort, revealing the transcription factor EGR1 as significantly down-regulated in both cohorts and as a potential regulator of broader transcription changes observed in schizophrenia patients. Additionally, broad down-regulation of genes specific to neurons and concordant up-regulation of genes specific to astrocytes was observed in schizophrenia and bipolar disorder patients relative to controls. Metabolomic profiling identified disruption of GABA levels in schizophrenia patients. CONCLUSIONS: We provide a comprehensive post-mortem transcriptome profile of three psychiatric disorders across three brain regions. We highlight a high-confidence set of independently validated genes differentially expressed between schizophrenia and control patients in the anterior cingulate cortex and integrate transcriptional changes with untargeted metabolite profiling.


Subject(s)
Bipolar Disorder/genetics , Brain/metabolism , Depressive Disorder, Major/genetics , Schizophrenia/genetics , Transcriptome , Autopsy , Bipolar Disorder/metabolism , Chromatin Immunoprecipitation , Depressive Disorder, Major/metabolism , Early Growth Response Protein 1/metabolism , Female , Humans , Male , Metabolomics , Schizophrenia/metabolism , Sequence Analysis, RNA
7.
Proc Natl Acad Sci U S A ; 110(24): 9950-5, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23671070

ABSTRACT

A cardinal symptom of major depressive disorder (MDD) is the disruption of circadian patterns. However, to date, there is no direct evidence of circadian clock dysregulation in the brains of patients who have MDD. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain were difficult to characterize. Here, we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-h cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ("controls") and 34 patients with MDD. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, nucleus accumbens, and cerebellum. Several hundred transcripts in each region showed 24-h cyclic patterns in controls, and >100 transcripts exhibited consistent rhythmicity and phase synchrony across regions. Among the top-ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERBa), DBP, BHLHE40 (DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in the brains of patients with MDD due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This transcriptome-wide analysis of the human brain demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggests potentially important molecular targets for treatment of mood disorders.


Subject(s)
Brain/metabolism , Circadian Rhythm/genetics , Depressive Disorder, Major/genetics , Gene Expression Profiling , ARNTL Transcription Factors , Adult , Aged , Autopsy , Basic Helix-Loop-Helix Transcription Factors/genetics , Circadian Clocks/genetics , Female , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Oligonucleotide Array Sequence Analysis , Period Circadian Proteins/genetics
8.
Nature ; 489(7416): 391-399, 2012 Sep 20.
Article in English | MEDLINE | ID: mdl-22996553

ABSTRACT

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Brain/anatomy & histology , Brain/metabolism , Gene Expression Profiling , Transcriptome/genetics , Adult , Animals , Brain/cytology , Calbindins , Databases, Genetic , Dopamine/metabolism , Health , Hippocampus/cytology , Hippocampus/metabolism , Humans , In Situ Hybridization , Internet , Macaca mulatta/anatomy & histology , Macaca mulatta/genetics , Male , Mice , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Oligonucleotide Array Sequence Analysis , Post-Synaptic Density/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , S100 Calcium Binding Protein G/genetics , Species Specificity
9.
PLoS One ; 7(4): e35367, 2012.
Article in English | MEDLINE | ID: mdl-22558144

ABSTRACT

Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.


Subject(s)
Gene Expression Regulation/genetics , Gyrus Cinguli/metabolism , Mood Disorders/metabolism , Nucleus Accumbens/metabolism , Prefrontal Cortex/metabolism , Suicide , Adult , Age Factors , Analysis of Variance , California , Female , Gene Expression Profiling , Humans , Hydrogen-Ion Concentration , Male , Metallothionein/genetics , Metallothionein/metabolism , Microarray Analysis , Middle Aged , Mood Disorders/genetics , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Sex Factors
10.
J Neurosci Methods ; 163(2): 295-309, 2007 Jul 30.
Article in English | MEDLINE | ID: mdl-17512057

ABSTRACT

Gene expression profiles of postmortem brain tissue represent important resources for understanding neuropsychiatric illnesses. The impact(s) of quality covariables on the analysis and results of gene expression studies are important questions. This paper addressed critical variables which might affect gene expression in two brain regions. Four broad groups of quality indicators in gene expression profiling studies (clinical, tissue, RNA, and microarray quality) were identified. These quality control indicators were significantly correlated, however one quality variable did not account for the total variance in microarray gene expression. The data showed that agonal factors and low pH correlated with decreased integrity of extracted RNA in two brain regions. These three parameters also modulated the significance of alterations in mitochondrial-related genes. The average F-ratio summaries across all transcripts showed that RNA degradation from the AffyRNAdeg program accounted for higher variation than all other quality factors. Taken together, these findings confirmed prior studies, which indicated that quality parameters including RNA integrity, agonal factors, and pH are related to differences in gene expression profiles in postmortem brain. Individual candidate genes can be evaluated with these quality parameters in post hoc analysis to help strengthen the relevance to psychiatric disorders. We find that clinical, tissue, RNA, and microarray quality are all useful variables for collection and consideration in study design, analysis, and interpretation of gene expression results in human postmortem studies.


Subject(s)
Brain Chemistry/genetics , Brain/metabolism , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/analysis , RNA, Messenger/genetics , Cerebellum/chemistry , Cerebellum/metabolism , Gene Expression Regulation/genetics , Gyrus Cinguli/chemistry , Gyrus Cinguli/metabolism , Humans , Hypoxia-Ischemia, Brain/genetics , Hypoxia-Ischemia, Brain/metabolism , Mental Disorders/diagnosis , Mental Disorders/genetics , Mental Disorders/metabolism , Middle Aged , Postmortem Changes , RNA Stability/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...