Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Am J Physiol Endocrinol Metab ; 326(6): E807-E818, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656130

ABSTRACT

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle from rodents and humans of both sexes. We recently found that concurrent mutation of three key sites to prevent their phosphorylation (Ser588, Thr642, and Ser704) on Akt substrate of 160 kDa (AS160; also known as TBC1D4) reduced the magnitude of the enhancement of postexercise ISGU (PEX-ISGU) by muscle from male, but not female rats. However, we did not test the role of individual phosphorylation sites on PEX-ISGU. Accordingly, our current aim was to test whether AS160 Ser704 phosphorylation (pSer704) is required for elevated PEX-ISGU by muscle. AS160-knockout (AS160-KO) rats (female and male) were studied when either in sedentary or 3 h after acute exercise. Adeno-associated virus (AAV) vectors were used to enable muscle expression of wild-type AS160 (AAV-WT-AS160) or AS160 mutated Ser704 to alanine to prevent phosphorylation (AAV-1P-AS160). Paired epitrochlearis muscles from each rat were injected with AAV-WT-AS160 or AAV-1P-AS160. We discovered that regardless of sex 1) AS160 abundance in AS160-KO rats was similar in paired muscles expressing WT-AS160 versus 1P-AS160; 2) muscles from exercised versus sedentary rats had greater ISGU, and PEX-ISGU was slightly greater for muscles expressing 1P-AS160 versus contralateral muscles expressing WT-AS160; and 3) pAS160Thr642 was lower in muscles expressing 1P-AS160 versus paired muscles expressing WT-AS160. These results indicate that pAS160Ser704 was not essential for elevated PEX-ISGU by skeletal muscle from rats of either sex. Furthermore, elimination of the postexercise increase in pAS160Thr642 did not lessen the postexercise effect on ISGU.NEW & NOTEWORTHY The current study evaluated the role of Akt substrate of 160 kDa (AS160) phosphorylation on Ser704 in increased insulin-stimulated glucose uptake by skeletal muscle after exercise. Adeno-associated virus vectors were engineered to express either wild-type-AS160 or AS160 mutated so that it could not be phosphorylated on Ser704 in paired muscles from AS160-knockout rats. The results demonstrated that AS160 phosphorylation on Ser704 was not essential for exercise-induced elevation in insulin-stimulated glucose uptake by rats of either sex.


Subject(s)
GTPase-Activating Proteins , Glucose , Insulin , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Female , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Rats , Phosphorylation , Physical Conditioning, Animal/physiology , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Insulin/metabolism , Glucose/metabolism , Serine/metabolism , Rats, Sprague-Dawley
2.
Appl Physiol Nutr Metab ; 49(5): 614-625, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38181403

ABSTRACT

We assessed the effects of two levels of calorie restriction (CR; eating either 15% or 35% less than ad libitum, AL, food intake for 8 weeks) by 24-month-old female and male rats on glucose uptake (GU) and phosphorylation of key signaling proteins (Akt; AMP-activated protein kinase, AMPK; Akt substrate of 160 kDa, AS160) measured in isolated skeletal muscles that underwent four incubation conditions (without either insulin or AICAR, an AMPK activator; with AICAR alone; with insulin alone; or with insulin and AICAR). Regardless of sex: (1) neither CR group versus the AL group had greater GU by insulin-stimulated muscles; (2) phosphorylation of Akt in insulin-stimulated muscles was increased in 35% CR versus AL rats; (3) prior AICAR treatment of muscle resulted in greater GU by insulin-stimulated muscles, regardless of diet; and (4) AICAR caused elevated phosphorylation of acetyl CoA carboxylase, an indicator of AMPK activation, in all diet groups. There was a sexually dimorphic diet effect on AS160 phosphorylation, with 35% CR exceeding AL for insulin-stimulated muscles in male rats, but not in female rats. Our working hypothesis is that the lack of a CR-effect on GU by insulin-stimulated muscles was related to the extended duration of the ex vivo incubation period (290 min compared to 40-50 min that was previously reported to be effective). The observed efficacy of prior treatment of muscles with AICAR to improve glucose uptake in insulin-stimulated muscles supports the strategy of targeting AMPK with the goal of improving insulin sensitivity in older females and males.


Subject(s)
AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Caloric Restriction , Glucose , Insulin , Muscle, Skeletal , Proteins , Proto-Oncogene Proteins c-akt , Ribonucleotides , Signal Transduction , Animals , Female , Male , Rats , Acetyl-CoA Carboxylase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , GTPase-Activating Proteins/metabolism , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribonucleotides/pharmacology , Sex Factors , Signal Transduction/drug effects , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/metabolism
3.
PLoS One ; 19(1): e0295964, 2024.
Article in English | MEDLINE | ID: mdl-38289946

ABSTRACT

Some acute exercise effects are influenced by postexercise (PEX) diet, and these diet-effects are attributed to differential glycogen resynthesis. However, this idea is challenging to test rigorously. Therefore, we devised a novel genetic model to modify muscle glycogen synthase 1 (GS1) expression in rat skeletal muscle with an adeno-associated virus (AAV) short hairpin RNA knockdown vector targeting GS1 (shRNA-GS1). Contralateral muscles were injected with scrambled shRNA (shRNA-Scr). Muscles from exercised (2-hour-swim) and time-matched sedentary (Sed) rats were collected immediately postexercise (IPEX), 5-hours-PEX (5hPEX), or 9-hours-PEX (9hPEX). Rats in 5hPEX and 9hPEX experiments were refed (RF) or not-refed (NRF) chow. Muscles were analyzed for glycogen, abundance of metabolic proteins (pyruvate dehydrogenase kinase 4, PDK4; peroxisome proliferator-activated receptor γ coactivator-1α, PGC1α; hexokinase II, HKII; glucose transporter 4, GLUT4), AMP-activated protein kinase phosphorylation (pAMPK), and glycogen metabolism-related enzymes (glycogen phosphorylase, PYGM; glycogen debranching enzyme, AGL; glycogen branching enzyme, GBE1). shRNA-GS1 versus paired shRNA-Scr muscles had markedly lower GS1 abundance. IPEX versus Sed rats had lower glycogen and greater pAMPK, and neither of these IPEX-values differed for shRNA-GS1 versus paired shRNA-Scr muscles. IPEX versus Sed groups did not differ for abundance of metabolic proteins, regardless of GS1 knockdown. Glycogen in RF-rats was lower for shRNA-GS1 versus paired shRNA-Scr muscles at both 5hPEX and 9hPEX. HKII protein abundance was greater for 5hPEX versus Sed groups, regardless of GS1 knockdown or diet, and despite differing glycogen levels. At 9hPEX, shRNA-GS1 versus paired shRNA-Scr muscles had greater PDK4 and PGC1α abundance within each diet group. However, the magnitude of PDK4 or PGC1α changes was similar in each diet group regardless of GS1 knockdown although glycogen differed between paired muscles only in RF-rats. In summary, we established a novel genetic approach to investigate the relationship between muscle glycogen and other exercise effects. Our results suggest that exercise-effects on abundance of several metabolic proteins did not uniformly correspond to differences in postexercise glycogen.


Subject(s)
Glycogen , Physical Conditioning, Animal , Rats , Animals , Glycogen/metabolism , Glucose/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Models, Genetic , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , RNA, Small Interfering/metabolism , Insulin/metabolism
4.
FASEB J ; 37(7): e23021, 2023 07.
Article in English | MEDLINE | ID: mdl-37289137

ABSTRACT

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.


Subject(s)
GTPase-Activating Proteins , Hyperinsulinism , Insulin , Physical Conditioning, Animal , Animals , Female , Male , Rats , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Hyperinsulinism/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Physical Conditioning, Animal/physiology , Serine/metabolism , Threonine/metabolism
5.
Appl Physiol Nutr Metab ; 48(3): 283-292, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36634338

ABSTRACT

We evaluated effects of calorie restriction (CR; consuming 65% of ad libitum (AL) intake) for 8 weeks on female wildtype (WT) and Akt substrate of 160 kDa knockout (AS160-KO) rats. Insulin-stimulated glucose uptake (ISGU) was determined in isolated epitrochlearis muscles incubated with 0, 50, 100, or 500 µU/mL insulin. Phosphorylation of key insulin signaling proteins that control ISGU (Akt and AS160) was assessed by immunoblotting (Akt phosphorylation on Threonine-308, pAktThr308 and Serine-473, pAktSer473; AS160 phosphorylation on Serine-588, pAS160Ser588, and Threonine-642, pAS160Thr642). Abundance of proteins that regulate ISGU (GLUT4 glucose transporter protein and hexokinase II) was also determined by immunoblotting. The major results were as follows: (i) WT-CR versus WT-AL rats had greater ISGU with 100 and 500 µU/mL insulin; (ii) CR versus WT-AL rats had greater GLUT4 protein abundance; (iii) WT-CR versus WT-AL rats had greater pAktThr308 with 500 µU/mL insulin; (iv) WT-CR versus WT-AL rats did not differ for pAktSer473, pAS160Ser588, or pAS160Thr642 at any insulin concentration; (v) AS160-KO versus WT rats with each diet had lower ISGU at each insulin concentration, but not lower pAkt on either phosphosite; (vi) AS160-KO versus WT rats had lower muscle GLUT4 abundance regardless of diet; and (vii) AS160-KO-CR versus AS160-KO-AL rats did not differ for ISGU, GLUT4 abundance, pAkt on either phosphosite, or pAS160 on either phosphosite. These novel results demonstrated that AS160 expression, but not greater pAS160 on key phosphosites, was essential for the CR-induced increases in muscle ISGU and GLUT4 abundance of female rats.


Subject(s)
Glucose , Insulin , Animals , Female , Rats , Caloric Restriction , Glucose/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , Threonine/metabolism , Threonine/pharmacology
6.
J Gerontol A Biol Sci Med Sci ; 78(2): 177-185, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36269629

ABSTRACT

AMP-activated protein kinase (AMPK), a highly conserved, heterotrimeric serine/threonine kinase with critical sensory and regulatory functions, is proposed to induce antiaging actions of caloric restriction (CR). Although earlier studies assessed CR's effects on AMPK in rodent skeletal muscle, the scope of these studies was narrow with a limited focus on older animals. This study's purpose was to fill important knowledge gaps related to CR's influence on AMPK in skeletal muscle of older animals. Therefore, using epitrochlearis muscles from 24-month-old ad-libitum fed (AL) and CR (consuming 65% of AL intake for 8 weeks), male Fischer-344 × Brown Norway F1 rats, we determined: (a) AMPK Thr172 phosphorylation (a key regulatory site) by immunoblot; (b) AMPKα1 and AMPKα2 activity (representing the 2 catalytic α-subunits of AMPK), and AMPKγ3 activity (representing AMPK complexes that include the skeletal muscle-selective regulatory γ3 subunit) using enzymatic assays; (c) phosphorylation of multiple protein substrates that are linked to CR-related effects (acetyl-CoA carboxylase [ACC], that regulates lipid oxidation; Beclin-1 and ULK1 that are autophagy regulatory proteins; Raptor, mTORC1 complex protein that regulates autophagy; TBC1D1 and TBC1D4 that regulate glucose uptake) by immunoblot; and (d) ATP and AMP concentrations (key AMPK regulators) by mass spectrometry. The results revealed significant CR-associated increases in the phosphorylation of AMPKThr172 and 4 AMPK substrates (ACC, Beclin-1, TBC1D1, and TBC1D4), without significant diet-related differences in ATP or AMP concentration or AMPKα1-, AMPKα2-, or AMPKγ3-associated activity. The enhanced phosphorylation of multiple AMPK substrates provides novel mechanistic insights linking AMPK to functionally important consequences of CR.


Subject(s)
AMP-Activated Protein Kinases , Caloric Restriction , Rats , Male , Animals , Phosphorylation , AMP-Activated Protein Kinases/metabolism , Beclin-1/metabolism , Muscle, Skeletal/metabolism , Rats, Inbred F344 , Rats, Inbred BN , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/pharmacology , Adenosine Triphosphate/metabolism
7.
Facets (Ott) ; 7: 774-791, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36381195

ABSTRACT

Attenuated skeletal muscle glucose uptake (GU) has been observed with advancing age. It is important to elucidate the mechanisms linked to interventions that oppose this detrimental outcome. Earlier research using young rodents and (or) cultured myocytes reported that treatment with 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR; an AMP-activated protein kinase (AMPK) activator) can increase γ3-AMPK activity and reduce membrane cholesterol content, each of which has been proposed to elevate GU. However, the effect of AICAR treatment on γ3-AMPK activity and membrane cholesterol in skeletal muscle of aged animals has not been reported. Our purpose was to evaluate the effects of AICAR treatment on these potential mechanisms for enhanced glucose uptake in the skeletal muscle of aged animals. Epitrochlearis muscles from 26-27-month-old male rats were isolated and incubated ± AICAR, followed by 3 h incubation without AICAR, and then incubation with 3-O-methyl-[3 H] glucose (to assess GU ± insulin). Muscles were also analyzed for γ3-AMPK activity and membrane cholesterol content. Prior AICAR treatment led to increased γ3-AMPK activity, reduced membrane cholesterol content, and enhanced glucose uptake in skeletal muscle from aged rats. These observations revealed that two potential mechanisms for greater GU previously observed in younger animals and (or) cell models are also potentially relevant for enhanced GU by muscles from older animals.

8.
Diabetes ; 71(2): 219-232, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34753801

ABSTRACT

One exercise session can elevate insulin-stimulated glucose uptake (ISGU) in skeletal muscle, but the mechanisms remain elusive. Circumstantial evidence suggests a role for Akt substrate of 160 kDa (AS160 or TBC1D4). We used genetic approaches to rigorously test this idea. The initial experiment evaluated the role of AS160 in postexercise increase in ISGU using muscles from male wild-type (WT) and AS160-knockout (KO) rats. The next experiment used AS160-KO rats with an adeno-associated virus (AAV) approach to determine if rescuing muscle AS160 deficiency could restore the ability of exercise to improve ISGU. The third experiment tested if eliminating the muscle GLUT4 deficit in AS160-KO rats via AAV-delivered GLUT4 would enable postexercise enhancement of ISGU. The final experiment used AS160-KO rats and AAV delivery of AS160 mutated to prevent phosphorylation of Ser588, Thr642, and Ser704 to evaluate their role in postexercise ISGU. We discovered the following: 1) AS160 expression was essential for postexercise increase in ISGU; 2) rescuing muscle AS160 expression of AS160-KO rats restored postexercise enhancement of ISGU; 3) restoring GLUT4 expression in AS160-KO muscle did not rescue the postexercise increase in ISGU; and 4) although AS160 phosphorylation on three key sites was not required for postexercise elevation in ISGU, it was essential for the full exercise effect.


Subject(s)
GTPase-Activating Proteins/genetics , Glucose/metabolism , Insulin/pharmacology , Muscle, Skeletal/drug effects , Physical Conditioning, Animal/physiology , Animals , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , GTPase-Activating Proteins/metabolism , Gene Expression , Gene Knockout Techniques , Insulin/metabolism , Insulin Resistance/genetics , Male , Muscle, Skeletal/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphorylation , Rats , Rats, Transgenic
9.
J Appl Physiol (1985) ; 132(1): 140-153, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34882030

ABSTRACT

Previous studies demonstrated that acute exercise can enhance glucose uptake (GU), γ3-AMP-activated protein kinase (AMPK) activity, and Akt substrate of 160 kDa (AS160) phosphorylation in skeletal muscles from low-fat diet (LFD)- and high-fat diet (HFD)-fed male rats. Because little is known about exercise effects on these outcomes in females, we assessed postexercise GU by muscles incubated ± insulin, delta-insulin GU (GU of muscles incubated with insulin minus GU uptake of paired muscles incubated without insulin), and muscle signaling proteins from female rats fed a LFD or a brief HFD (2 wk). Rats were sedentary (LFD-SED, HFD-SED) or swim exercised. Immediately postexercise (IPEX) or 3 h postexercise (3hPEX), epitrochlearis muscles were incubated (no insulin IPEX; ±insulin 3hPEX) to determine GU. Muscle γ3-AMPK activity (IPEX, 3hPEX) and phosphorylated AS160 (pAS160; 3hPEX) were also assessed. γ3-AMPK activity and insulin-independent GU of IPEX rats exceeded sedentary rats without diet-related differences in either outcome. At 3hPEX, both GU by insulin-stimulated muscles and delta-insulin GU exceeded their respective diet-matched sedentary controls. GU by insulin-stimulated muscles, but not delta-insulin GU for LFD-3hPEX, exceeded HFD-3hPEX. LFD-3hPEX versus LFD-SED had greater γ3-AMPK activity and greater pAS160. HFD-3hPEX exceeded HFD-SED for pAS160 but not for γ3-AMPK activity. pAS160 and γ3-AMPK at 3hPEX did not differ between diet groups. These results revealed that increased γ3-AMPK activity at 3hPEX was not essential for greater GU in insulin-stimulated muscle or greater delta-insulin GU in HFD female rats. Similarly elevated γ3-AMPK activity in LFD-IPEX versus HFD-IPEX and pAS160 in LFD-3hPEX versus HFD-3hPEX may contribute to the comparable delta-insulin GU at 3hPEX in both diet groups.NEW & NOTEWORTHY Glucose uptake (GU) and phosphorylated AS160 (pAS160) by insulin-stimulated muscles at 3 h postexercise (3hPEX) exceeded diet-matched controls in female low-fat diet-fed (LFD) or high-fat diet-fed (HFD) rats. GU with insulin for LFD-3hPEX exceeded HFD-3hPEX, whereas pAS160 was similar between these groups. γ3-AMPK immediately postexercise (IPEX) was similarly elevated in LFD and HFD, but only LFD-3hPEX had increased γ3-AMPK. These results suggest that greater γ3-AMPK at IPEX and pAS160 at 3hPEX may contribute to elevated GU with insulin, but greater γ3-AMPK at 3hPEX was dispensable for female HFD rats.


Subject(s)
Insulin Resistance , Muscle, Skeletal , Physical Conditioning, Animal , AMP-Activated Protein Kinases/metabolism , Animals , Female , Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats
11.
Appl Physiol Nutr Metab ; 46(6): 685-689, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33765397

ABSTRACT

One exercise session can elevate insulin-stimulated glucose uptake (GU) by skeletal muscle, but it is uncertain if this effect is accompanied by altered membrane cholesterol content, which is reportedly inversely related to insulin-stimulated GU. Muscles from sedentary (SED) or exercised 3 h post-exercise (3hPEX) rats were evaluated for GU, membrane cholesterol, and phosphorylation of cholesterol regulatory proteins (pHMCGRSer872 and pABCA1Ser2054). Insulin-stimulated GU for 3hPEX exceeded SED. Membrane cholesterol, pHMCGRSer872 and pABCA1Ser2054 did not differ between groups. Novelty: Alterations in membrane cholesterol and phosphorylation of proteins that regulate muscle cholesterol are not essential for elevated insulin-stimulated GU in skeletal muscle after acute exercise.


Subject(s)
Cholesterol/metabolism , Glucose/metabolism , Insulin/pharmacology , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , ATP Binding Cassette Transporter 1/metabolism , Animals , Hydroxymethylglutaryl CoA Reductases/metabolism , Phosphorylation , Rats
12.
PLoS One ; 15(2): e0223340, 2020.
Article in English | MEDLINE | ID: mdl-32053588

ABSTRACT

The Rab GTPase activating protein known as Akt substrate of 160 kDa (AS160 or TBC1D4) regulates insulin-stimulated glucose uptake in skeletal muscle, the heart, and white adipose tissue (WAT). A novel rat AS160-knockout (AS160-KO) was created with CRISPR/Cas9 technology. Because female AS160-KO versus wild type (WT) rats had not been previously evaluated, the primary objective of this study was to compare female AS160-KO rats with WT controls for multiple, important metabolism-related endpoints. Body mass and composition, physical activity, and energy expenditure were not different between genotypes. AS160-KO versus WT rats were glucose intolerant based on an oral glucose tolerance test (P<0.001) and insulin resistant based on a hyperinsulinemic-euglycemic clamp (HEC; P<0.001). Tissue glucose uptake during the HEC of female AS160-KO versus WT rats was: 1) significantly lower in epitrochlearis (P<0.05) and extensor digitorum longus (EDL; P<0.01) muscles of AS160-KO compared to WT rats; 2) not different in soleus, gastrocnemius or WAT; and 3) ~3-fold greater in the heart (P<0.05). GLUT4 protein content was reduced in AS160-KO versus WT rats in the epitrochlearis (P<0.05), EDL (P<0.05), gastrocnemius (P<0.05), soleus (P<0.05), WAT (P<0.05), and the heart (P<0.005). Insulin-stimulated glucose uptake by isolated epitrochlearis and soleus muscles was lower (P<0.001) in AS160-KO versus WT rats. Akt phosphorylation of insulin-stimulated tissues was not different between the genotypes. A secondary objective was to probe processes that might account for the genotype-related increase in myocardial glucose uptake, including glucose transporter protein abundance (GLUT1, GLUT4, GLUT8, SGLT1), hexokinase II protein abundance, and stimulation of the AMP-activated protein kinase (AMPK) pathway. None of these parameters differed between genotypes. Metabolic phenotyping in the current study revealed AS160 deficiency produced a profound glucoregulatory phenotype in female AS160-KO rats that was strikingly similar to the results previously reported in male AS160-KO rats.


Subject(s)
GTPase-Activating Proteins/deficiency , Gluconeogenesis/genetics , Glucose/metabolism , Insulin Resistance/genetics , Muscle, Skeletal/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Female , GTPase-Activating Proteins/genetics , Glucose Clamp Technique , Glucose Tolerance Test , Glucose Transport Proteins, Facilitative/metabolism , Humans , Liver/metabolism , Physical Conditioning, Animal , Rats , Rats, Transgenic , Rats, Wistar , Signal Transduction
13.
J Appl Physiol (1985) ; 128(2): 410-421, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31944891

ABSTRACT

One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls.NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.


Subject(s)
AMP-Activated Protein Kinases/metabolism , GTPase-Activating Proteins/metabolism , Glucose/metabolism , Insulin/pharmacology , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Proto-Oncogene Proteins c-akt/metabolism , Animals , Phosphorylation , Rats
14.
J Gerontol A Biol Sci Med Sci ; 75(2): 207-217, 2020 01 20.
Article in English | MEDLINE | ID: mdl-30272137

ABSTRACT

We evaluated effects of calorie restriction (CR: consuming 60-65% of ad libitum [AL] intake) initiated late-in-life with or without acute exercise on insulin-stimulated glucose uptake (ISGU) of skeletal muscle by studying four groups of 26-month-old rats: sedentary-AL, sedentary-CR (8-week duration), 3 hours post-exercise (3hPEX)-AL and 3hPEX-CR. ISGU was determined in isolated epitrochlearis muscles incubated ± insulin. Muscles were assessed for signaling proteins (immunoblotting) and lipids (mass spectrometry). ISGU from sedentary-CR and 3hPEX-AL exceeded sedentary-AL; 3hPEX-CR exceeded all other groups. Akt (Ser473, Thr308) and Akt substrate of 160 kDa (AS160; Ser588, Thr642, Ser704) phosphorylation levels tracked with ISGU. Among the 477 lipids detected, 114 were altered by CR (including reductions in 15 of 25 acylcarnitines), and 27 were altered by exercise (including reductions in 18 of 22 lysophosphatidylcholines) with only six lipids overlapping between CR and exercise. ISGU significantly correlated with 23 lipids, including: acylcarnitine 20:1 (r = .683), lysophosphatidylethanolamine19:0 (r = -.662), acylcarnitine 24:0 (r = .611), and plasmenyl-phosphatidylethanolamine 37:5 (r = -.603). Muscle levels of ceramides (a lipid class previously linked to insulin resistance) were not altered by CR and/or exercise nor significantly correlated with ISGU, implicating other mechanisms (which potentially involve other lipids identified in this study) for greater ISGU and Akt and AS160 phosphorylation with these interventions.


Subject(s)
Caloric Restriction , Glucose/metabolism , Insulin/metabolism , Lipid Metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Age Factors , Animals , Immunoblotting , Insulin Resistance , Male , Phosphorylation , Rats , Rats, Inbred F344 , Sedentary Behavior , Signal Transduction
15.
Am J Physiol Endocrinol Metab ; 317(6): E984-E998, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31573845

ABSTRACT

Muscle is a heterogeneous tissue composed of multiple fiber types. Earlier research revealed fiber type-selective postexercise effects on insulin-stimulated glucose uptake (ISGU) from insulin-resistant rats (increased for type IIA, IIB, IIBX, and IIX, but not type I). In whole muscle from insulin-resistant rats, the exercise increase in ISGU is accompanied by an exercise increase in insulin-stimulated AS160 phosphorylation (pAS160), an ISGU-regulating protein. We hypothesized that, in insulin-resistant muscle, the fiber type-selective exercise effects on ISGU would correspond to the fiber type-selective exercise effects on pAS160. Rats were fed a 2-wk high-fat diet (HFD) and remained sedentary (SED) or exercised before epitrochlearis muscles were dissected either immediately postexercise (IPEX) or at 3 h postexercise (3hPEX) using an exercise protocol that previously revealed fiber type-selective effects on ISGU. 3hPEX muscles and SED controls were incubated ± 100µU/mL insulin. Individual myofibers were isolated and pooled on the basis of myosin heavy chain (MHC) expression, and key phosphoproteins were measured. Myofiber glycogen and MHC expression were evaluated in muscles from other SED, IPEX, and 3hPEX rats. Insulin-stimulated pAktSer473 and pAktThr308 were unaltered by exercise in all fiber types. Insulin-stimulated pAS160 was greater for 3hPEX vs. SED on at least one phosphosite (Ser588, Thr642, and/or Ser704) in type IIA, IIBX, and IIB fibers, but not in type I or IIX fibers. Both IPEX and 3hPEX glycogen were decreased versus SED in all fiber types. These results provided evidence that fiber type-specific pAS160 in insulin-resistant muscle may play a role in the previously reported fiber type-specific elevation in ISGU in some, but not all, fiber types.


Subject(s)
GTPase-Activating Proteins/metabolism , Glucose/metabolism , Glycogen/metabolism , Insulin Resistance , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Animals , Diet, High-Fat , Hexokinase , Myosin Heavy Chains/metabolism , Phosphorylation , Rats , Sedentary Behavior
16.
Sci Signal ; 12(585)2019 06 11.
Article in English | MEDLINE | ID: mdl-31186373

ABSTRACT

AMP-activated protein kinase (AMPK) senses energetic stress and, in turn, promotes catabolic and suppresses anabolic metabolism coordinately to restore energy balance. We found that a diverse array of AMPK activators increased mTOR complex 2 (mTORC2) signaling in an AMPK-dependent manner in cultured cells. Activation of AMPK with the type 2 diabetes drug metformin (GlucoPhage) also increased mTORC2 signaling in liver in vivo and in primary hepatocytes in an AMPK-dependent manner. AMPK-mediated activation of mTORC2 did not result from AMPK-mediated suppression of mTORC1 and thus reduced negative feedback on PI3K flux. Rather, AMPK associated with and directly phosphorylated mTORC2 (mTOR in complex with rictor). As determined by two-stage in vitro kinase assay, phosphorylation of mTORC2 by recombinant AMPK was sufficient to increase mTORC2 catalytic activity toward Akt. Hence, AMPK phosphorylated mTORC2 components directly to increase mTORC2 activity and downstream signaling. Functionally, inactivation of AMPK, mTORC2, and Akt increased apoptosis during acute energetic stress. By showing that AMPK activates mTORC2 to increase cell survival, these data provide a potential mechanism for how AMPK paradoxically promotes tumorigenesis in certain contexts despite its tumor-suppressive function through inhibition of growth-promoting mTORC1. Collectively, these data unveil mTORC2 as a target of AMPK and the AMPK-mTORC2 axis as a promoter of cell survival during energetic stress.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Apoptosis , Energy Metabolism , Hepatocytes/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Stress, Physiological , AMP-Activated Protein Kinases/genetics , Animals , Cell Line , Cell Survival , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
17.
PLoS One ; 14(4): e0216236, 2019.
Article in English | MEDLINE | ID: mdl-31034517

ABSTRACT

Akt substrate of 160 kDa (also called AS160 or TBC1D4) is a Rab GTPase activating protein and key regulator of insulin-stimulated glucose uptake which is expressed by multiple tissues, including skeletal muscle, white adipose tissue (WAT) and the heart. This study introduces a novel rat AS160-knockout (AS160-KO) model that was created using CRISPR/Cas9 technology. We compared male AS160-KO versus wildtype (WT) rats for numerous metabolism-related endpoints. Body mass, body composition, energy expenditure and physical activity did not differ between genotypes. Oral glucose intolerance was detected in AS160-KO versus WT rats (P<0.005). A hyperinsulinemic-euglycemic clamp (HEC) revealed insulin resistance for glucose infusion rate (P<0.05) with unaltered hepatic glucose production in AS160-KO versus WT rats. Genotype-effects on glucose uptake during the HEC: 1) was significantly lower in epitrochlearis (P<0.01) and extensor digitorum longus (P<0.05) of AS160-KO versus WT rats, and tended to be lower for AS160-KO versus WT rats in the soleus (P<0.06) and gastrocnemius (P<0.08); 2) tended to be greater for AS160-KO versus WT rats in white adipose tissue (P = 0.09); and 3) was significantly greater in the heart (P<0.005) of AS160-KO versus WT rats. GLUT4 protein abundance was significantly lower for AS160-KO versus WT rats in each tissue analyzed (P<0.01-0.001) except the gastrocnemius. Ex vivo insulin-stimulated glucose uptake was significantly lower (P<0.001) for AS160-KO versus WT rats in isolated epitrochlearis or soleus. Insulin-stimulated Akt phosphorylation (in vivo or ex vivo) did not differ between genotypes for any tissue tested. Ex vivo AICAR-stimulated glucose uptake by isolated epitrochlearis was significantly lower for AS160-KO versus WT rats (P<0.01) without genotype-induced alteration in AMP-activated protein phosphorylation. This unique AS160-KO rat model, which elucidated striking genotype-related modifications in glucoregulation, will enable future research aimed at understanding AS160's roles in numerous physiological processes in response to various interventions (e.g., diet and/or exercise).


Subject(s)
GTPase-Activating Proteins/metabolism , Gene Knockout Techniques , Glucose/metabolism , Organ Specificity , Adenylate Kinase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Body Composition , Body Weight , Deoxyglucose/metabolism , Feeding Behavior , Genotype , Glucose Clamp Technique , Glucose Tolerance Test , Glucose Transporter Type 4/metabolism , Humans , Hyperinsulinism/metabolism , Insulin/pharmacology , Male , Models, Animal , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Phosphorylation , Physical Conditioning, Animal , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Transgenic , Ribonucleotides/pharmacology
18.
Am J Physiol Endocrinol Metab ; 316(5): E837-E851, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30835507

ABSTRACT

Earlier research using muscle tissue demonstrated that postexercise elevation in insulin-stimulated glucose uptake (ISGU) occurs concomitant with greater insulin-stimulated Akt substrate of 160 kDa (AS160) phosphorylation (pAS160) on sites that regulate ISGU. Because skeletal muscle is a heterogeneous tissue, we previously isolated myofibers from rat epitrochlearis to assess fiber type-selective ISGU. Exercise induced greater ISGU in type I, IIA, IIB, and IIBX but not IIX fibers. This study tested if exercise effects on pAS160 correspond with previously published fiber type-selective exercise effects on ISGU. Rats were studied immediately postexercise (IPEX) or 3.5 h postexercise (3.5hPEX) with time-matched sedentary controls. Myofibers dissected from the IPEX experiment were analyzed for fiber type (myosin heavy chain isoform expression) and key phosphoproteins. Isolated muscles from the 3.5hPEX experiment were incubated with or without insulin. Myofibers (3.5hPEX) were analyzed for fiber type, key phosphoproteins, and GLUT4 protein abundance. We hypothesized that insulin-stimulated pAS160 at 3.5hPEX would exceed sedentary controls only in fiber types characterized by greater ISGU postexercise. Values for phosphorylation of AMP-activated kinase substrates (acetyl CoA carboxylaseSer79 and AS160Ser704) from IPEX muscles exceeded sedentary values in each fiber type, suggesting exercise recruitment of all fiber types. Values for pAS160Thr642 and pAS160Ser704 from insulin-stimulated muscles 3.5hPEX exceeded sedentary values for type I, IIA, IIB, and IIBX but not IIX fibers. GLUT4 abundance was unaltered 3.5hPEX in any fiber type. These results advanced understanding of exercise-induced insulin sensitization by providing compelling support for the hypothesis that enhanced insulin-stimulated phosphorylation of AS160 is linked to elevated ISGU postexercise at a fiber type-specific level independent of altered GLUT4 expression.


Subject(s)
GTPase-Activating Proteins/metabolism , Glucose/metabolism , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Physical Conditioning, Animal , Animals , GTPase-Activating Proteins/drug effects , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Phosphorylation , Rats
19.
Am J Physiol Endocrinol Metab ; 316(5): E695-E706, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30753114

ABSTRACT

Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise's effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.


Subject(s)
Glucose/metabolism , Insulin Resistance , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Animals , Diet, High-Fat , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Insulin/pharmacology , Lipid Droplets/metabolism , Male , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Rats , Rats, Wistar , Sedentary Behavior
20.
J Appl Physiol (1985) ; 127(2): 277-305, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30730811

ABSTRACT

John O. Holloszy, as perhaps the world's preeminent exercise biochemist/physiologist, published >400 papers over his 50+ year career, and they have been cited >41,000 times. In 1965 Holloszy showed for the first time that exercise training in rodents resulted in a doubling of skeletal muscle mitochondria, ushering in a very active era of skeletal muscle plasticity research. He subsequently went on to describe the consequences of and the mechanisms underlying these adaptations. Holloszy was first to show that muscle contractions increase muscle glucose transport independent of insulin, and he studied the mechanisms underlying this response throughout his career. He published important papers assessing the impact of training on glucose and insulin metabolism in healthy and diseased humans. Holloszy was at the forefront of rodent studies of caloric restriction and longevity in the 1980s, following these studies with important cross-sectional and longitudinal caloric restriction studies in humans. Holloszy was influential in the discipline of cardiovascular physiology, showing that older healthy and diseased populations could still elicit beneficial cardiovascular adaptations with exercise training. Holloszy and his group made important contributions to exercise physiology on the effects of training on numerous metabolic, hormonal, and cardiovascular adaptations. Holloszy's outstanding productivity was made possible by his mentoring of ~100 postdoctoral fellows and substantial NIH grant funding over his entire career. Many of these fellows have also played critical roles in the exercise physiology/biochemistry discipline. Thus it is clear that exercise biochemistry and physiology will be influenced by John Holloszy for numerous years to come.


Subject(s)
Exercise/physiology , Muscle, Skeletal/physiology , Adaptation, Physiological/physiology , Animals , Biological Transport/physiology , Cardiovascular Physiological Phenomena , Cross-Sectional Studies , Glucose/metabolism , Humans , Insulin/metabolism , Longitudinal Studies , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...