Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Leukemia ; 37(12): 2448-2456, 2023 12.
Article in English | MEDLINE | ID: mdl-37798328

ABSTRACT

T-cell malignancies are associated with frequent relapse and high morbidity, which is partly due to the lack of effective or targeted treatment options. To broaden the use of CAR-T cells in pan T-cell malignancies, we developed an allogeneic "universal" CD2-targeting CAR-T cell (UCART2), in which the CD2 antigen is deleted to prevent fratricide, and the T-cell receptor is removed to prevent GvHD. UCART2 demonstrated efficacy against T-ALL and CTCL and prolonged the survival of tumor-engrafted NSG mice in vivo. To evaluate the impact of CD2 on CAR-T function, we generated CD19 CAR-T cells (UCART19) with or without CD2 deletion, single-cell secretome analysis revealed that CD2 deletion in UCART19 reduced frequencies of the effector cytokines (Granzyme-B and IFN-γ). We also observed that UCART19ΔCD2 had reduced anti-tumor efficacy compared to UCART19 in a CD19+NALM6 xenograft model. Of note is that the reduced efficacy resulting from CD2 deletion was reversed when combined with rhIL-7-hyFc, a long-acting recombinant human interleukin-7. Treatment with rhIL-7-hyFc prolonged UCART2 persistence and increased survival in both the tumor re-challenge model and primary patient T-ALL model in vivo. Together, these data suggest that allogeneic fratricide-resistant UCART2, in combination with rhIL-7-hyFc, could be a suitable approach for treating T-cell malignancies.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Mice , Animals , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Neoplasm Recurrence, Local , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell , Antigens, CD19
2.
Nat Commun ; 13(1): 3296, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697686

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is routinely used to treat patients with refractory hematologic malignancies. However, a significant proportion of patients experience suboptimal CAR T cell cytotoxicity and persistence that can permit tumor cell escape and disease relapse. Here we show that a prototype pro-lymphoid growth factor is able to enhance CAR T cell efficacy. We demonstrate that a long-acting form of recombinant human interleukin-7 (IL-7) fused with hybrid Fc (rhIL-7-hyFc) promotes proliferation, persistence and cytotoxicity of human CAR T cells in xenogeneic mouse models, and murine CAR T cells in syngeneic mouse models, resulting in long-term tumor-free survival. Thus, rhIL-7-hyFc represents a tunable clinic-ready adjuvant for improving suboptimal CAR T cell activity.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Cell Proliferation , Humans , Interleukin-7/pharmacology , Mice , Recombinant Fusion Proteins , T-Lymphocytes
3.
J Immunol ; 198(10): 3989-3998, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28320831

ABSTRACT

Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds the receptors in the APC/T cell synapse and causes increased proliferation of T cells and a cytokine storm syndrome in vivo. Exposure to the toxin can be lethal and cause significant pathology in humans. The lack of effective therapies for SEB exposure remains an area of concern, particularly in scenarios of acute mass casualties. We hypothesized that blockade of the T cell costimulatory signal by the CTLA4-Ig synthetic protein (abatacept) could prevent SEB-dependent pathology. In this article, we demonstrate mice treated with a single dose of abatacept 8 h post SEB exposure had reduced pathology compared with control SEB-exposed mice. SEB-exposed mice showed significant reductions in body weight between days 4 and 9, whereas mice exposed to SEB and also treated with abatacept showed no weight loss for the duration of the study, suggesting therapeutic mitigation of SEB-induced morbidity. Histopathology and magnetic resonance imaging demonstrated that SEB mediated lung damage and edema, which were absent after treatment with abatacept. Analysis of plasma and lung tissues from SEB-exposed mice treated with abatacept demonstrated significantly lower levels of IL-6 and IFN-γ (p < 0.0001), which is likely to have resulted in less pathology. In addition, exposure of human and mouse PBMCs to SEB in vitro showed a significant reduction in levels of IL-2 (p < 0.0001) after treatment with abatacept, indicating that T cell proliferation is the main target for intervention. Our findings demonstrate that abatacept is a robust and potentially credible drug to prevent toxic effects from SEB exposure.


Subject(s)
Abatacept/therapeutic use , Antigen-Presenting Cells/immunology , Enterotoxins/toxicity , Staphylococcal Infections/drug therapy , T-Lymphocytes/immunology , Abatacept/administration & dosage , Abatacept/pharmacology , Animals , Body Weight , Cytokines/immunology , Enterotoxins/pharmacology , Humans , Interferon-gamma/blood , Interleukin-2/biosynthesis , Interleukin-2/immunology , Interleukin-6/blood , Lung/pathology , Mice , Monocytes/immunology , Staphylococcal Infections/immunology
4.
Neuromolecular Med ; 16(3): 606-19, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24858498

ABSTRACT

Blast injuries are an increasing problem in military conflicts and terrorist incidents. Blast-induced traumatic brain injury has risen to prominence and represents a specific form of primary brain injury, with sufficiently different physical attributes (and possibly biological consequences) to be classified separately. There is increasing interest in the role of blast in initiating inflammatory responses, which may be linked to the pathological processes seen clinically. Terminally anaesthetised rats were exposed to a blast wave directed at the cranium, using a bench-top blast wave generator. Control animals were not exposed to blast. Animals were killed after 8 h, and the brains examined for evidence of an inflammatory response. Compared to controls, erythropoietin, endothelial integrins, ICAM and sVCAM, and the pro-inflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1) were significantly elevated. Other pro-inflammatory cytokines, including MIP-1α, were also detectable, but levels did not permit accurate quantification. Six inflammatory genes examined by qRT-PCR exhibited a biologically significant increase in activity in the blast-exposed animals. These included genes supporting chemokines responsible for monocyte recruitment, including MCP-1, and chemokines influencing T cell movement. Brain injury is usually accompanied by pathological neuro-inflammation. This study shows that blast brain injury is no exception, and the data provide important mechanistic clues regarding the drivers of such inflammation. Whilst this effect alone is unlikely to be responsible for the totality of consequences of blast brain injury, it suggests a mechanism that may be priming the cerebral inflammatory response and rendering cerebral tissue more susceptible to the deleterious effects of systemic inflammatory reactions.


Subject(s)
Blast Injuries/metabolism , Brain Injuries/metabolism , Cell Adhesion Molecules/biosynthesis , Cytokines/biosynthesis , Encephalitis/metabolism , Endothelium, Vascular/physiopathology , Erythropoietin/biosynthesis , Integrins/biosynthesis , Animals , Blast Injuries/pathology , Brain Injuries/etiology , Brain Injuries/pathology , Cell Adhesion Molecules/genetics , Chemokine CCL2/biosynthesis , Chemokine CCL2/genetics , Chemotaxis, Leukocyte/genetics , Cytokines/genetics , Encephalitis/etiology , Endothelium, Vascular/pathology , Erythropoietin/genetics , Gene Expression Regulation , Hemodynamics , Integrins/genetics , Male , Random Allocation , Rats , Rats, Wistar , T-Lymphocytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL