Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 544, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822262

ABSTRACT

In the realm of multi-environment prediction, when the goal is to predict a complete environment using the others as a training set, the efficiency of genomic selection (GS) falls short of expectations. Genotype by environment interaction poses a challenge in achieving high prediction accuracies. Consequently, current efforts are focused on enhancing efficiency by integrating various types of inputs, such as phenomics data, environmental information, and other omics data. In this study, we sought to evaluate the impact of incorporating environmental information into the modeling process, in addition to genomic and phenomics information. Our evaluation encompassed five data sets of soft white winter wheat, and the results revealed a significant improvement in prediction accuracy, as measured by the normalized root mean square error (NRMSE), through the integration of environmental information. Notably, there was an average gain in prediction accuracy of 49.19% in terms of NRMSE across the data sets. Moreover, the observed prediction accuracy ranged from 5.68% (data set 3) to 60.36% (data set 4), underscoring the substantial effect of integrating environmental information. By including genomic, phenomic, and environmental data in prediction models, plant breeding programs can improve selection efficiency across locations.


Subject(s)
Genomics , Phenomics , Triticum , Triticum/genetics , Genomics/methods , Gene-Environment Interaction , Phenotype , Genotype , Plant Breeding , Environment , Genome, Plant
2.
Front Plant Sci ; 14: 1233892, 2023.
Article in English | MEDLINE | ID: mdl-37790786

ABSTRACT

In an era of climate change and increased environmental variability, breeders are looking for tools to maintain and increase genetic gain and overall efficiency. In recent years the field of high throughput phenotyping (HTP) has received increased attention as an option to meet this need. There are many platform options in HTP, but ground-based handheld and remote aerial systems are two popular options. While many HTP setups have similar specifications, it is not always clear if data from different systems can be treated interchangeably. In this research, we evaluated two handheld radiometer platforms, Cropscan MSR16R and Spectra Vista Corp (SVC) HR-1024i, as well as a UAS-based system with a Sentera Quad Multispectral Sensor. Each handheld radiometer was used for two years simultaneously with the unoccupied aircraft systems (UAS) in collecting winter wheat breeding trials between 2018-2021. Spectral reflectance indices (SRI) were calculated for each system. SRI heritability and correlation were analyzed in evaluating the platform and SRI usability for breeding applications. Correlations of SRIs were low against UAS SRI and grain yield while using the Cropscan system in 2018 and 2019. Dissimilarly, the SVC system in 2020 and 2021 produced moderate correlations across UAS SRI and grain yield. UAS SRI were consistently more heritable, with broad-sense heritability ranging from 0.58 to 0.80. Data standardization and collection windows are important to consider in ensuring reliable data. Furthermore, practical aspects and best practices for these HTP platforms, relative to applied breeding applications, are highlighted and discussed. The findings of this study can be a framework to build upon when considering the implementation of HTP technology in an applied breeding program.

3.
Front Genet ; 14: 1124218, 2023.
Article in English | MEDLINE | ID: mdl-37065497

ABSTRACT

With the human population continuing to increase worldwide, there is pressure to employ novel technologies to increase genetic gain in plant breeding programs that contribute to nutrition and food security. Genomic selection (GS) has the potential to increase genetic gain because it can accelerate the breeding cycle, increase the accuracy of estimated breeding values, and improve selection accuracy. However, with recent advances in high throughput phenotyping in plant breeding programs, the opportunity to integrate genomic and phenotypic data to increase prediction accuracy is present. In this paper, we applied GS to winter wheat data integrating two types of inputs: genomic and phenotypic. We observed the best accuracy of grain yield when combining both genomic and phenotypic inputs, while only using genomic information fared poorly. In general, the predictions with only phenotypic information were very competitive to using both sources of information, and in many cases using only phenotypic information provided the best accuracy. Our results are encouraging because it is clear we can enhance the prediction accuracy of GS by integrating high quality phenotypic inputs in the models.

4.
Genes (Basel) ; 13(12)2022 12 03.
Article in English | MEDLINE | ID: mdl-36553547

ABSTRACT

Genomic prediction is revolutionizing plant breeding since candidate genotypes can be selected without the need to measure their trait in the field. When a reference population contains both phenotypic and genotypic information, it is trained by a statistical machine learning method that is subsequently used for making predictions of breeding or phenotypic values of candidate genotypes that were only genotyped. Nevertheless, the successful implementation of the genomic selection (GS) methodology depends on many factors. One key factor is the type of statistical machine learning method used since some are unable to capture nonlinear patterns available in the data. While kernel methods are powerful statistical machine learning algorithms that capture complex nonlinear patterns in the data, their successful implementation strongly depends on the careful tuning process of the involved hyperparameters. As such, in this paper we compare three methods of tuning (manual tuning, grid search, and Bayesian optimization) for the Gaussian kernel under a Bayesian best linear unbiased predictor model. We used six real datasets of wheat (Triticum aestivum L.) to compare the three strategies of tuning. We found that if we want to obtain the major benefits of using Gaussian kernels, it is very important to perform a careful tuning process. The best prediction performance was observed when the tuning process was performed with grid search and Bayesian optimization. However, we did not observe relevant differences between the grid search and Bayesian optimization approach. The observed gains in terms of prediction performance were between 2.1% and 27.8% across the six datasets under study.


Subject(s)
Genomics , Plant Breeding , Bayes Theorem , Plant Breeding/methods , Genomics/methods , Algorithms , Phenotype
5.
BMC Genomics ; 23(1): 440, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35701755

ABSTRACT

BACKGROUND: Genetic improvement of end-use quality is an important objective in wheat breeding programs to meet the requirements of grain markets, millers, and bakers. However, end-use quality phenotyping is expensive and laborious thus, testing is often delayed until advanced generations. To better understand the underlying genetic architecture of end-use quality traits, we investigated the phenotypic and genotypic structure of 14 end-use quality traits in 672 advanced soft white winter wheat breeding lines and cultivars adapted to the Pacific Northwest region of the United States. RESULTS: This collection of germplasm had continuous distributions for the 14 end-use quality traits with industrially significant differences for all traits. The breeding lines and cultivars were genotyped using genotyping-by-sequencing and 40,518 SNP markers were used for association mapping (GWAS). The GWAS identified 178 marker-trait associations (MTAs) distributed across all wheat chromosomes. A total of 40 MTAs were positioned within genomic regions of previously discovered end-use quality genes/QTL. Among the identified MTAs, 12 markers had large effects and thus could be considered in the larger scheme of selecting and fixing favorable alleles in breeding for end-use quality in soft white wheat germplasm. We also identified 15 loci (two of them with large effects) that can be used for simultaneous breeding of more than a single end-use quality trait. The results highlight the complex nature of the genetic architecture of end-use quality, and the challenges of simultaneously selecting favorable genotypes for a large number of traits. This study also illustrates that some end-use quality traits were mainly controlled by a larger number of small-effect loci and may be more amenable to alternate selection strategies such as genomic selection. CONCLUSIONS: In conclusion, a breeder may be faced with the dilemma of balancing genotypic selection in early generation(s) versus costly phenotyping later on.


Subject(s)
Quantitative Trait Loci , Triticum , Genome-Wide Association Study , Phenotype , Plant Breeding , Triticum/genetics
6.
Front Plant Sci ; 13: 793925, 2022.
Article in English | MEDLINE | ID: mdl-35401609

ABSTRACT

The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes the foliar disease tan spot in both bread wheat and durum wheat. Wheat lines carrying the tan spot susceptibility gene Tsc1 are sensitive to the Ptr-produced necrotrophic effector (NE) Ptr ToxC. A compatible interaction results in leaf chlorosis, reducing yield by decreasing the photosynthetic area of leaves. Developing genetically resistant cultivars will effectively reduce disease incidence. Toward that goal, the production of chlorosis in response to inoculation with Ptr ToxC-producing isolates was mapped in two low-resolution biparental populations derived from LMPG-6 × PI 626573 (LP) and Louise × Penawawa (LouPen). In total, 58 genetic markers were developed and mapped, delineating the Tsc1 candidate gene region to a 1.4 centiMorgan (cM) genetic interval spanning 184 kb on the short arm of chromosome 1A. A total of nine candidate genes were identified in the Chinese Spring reference genome, seven with protein domains characteristic of resistance genes. Mapping of the chlorotic phenotype, development of genetic markers, both for genetic mapping and marker-assisted selection (MAS), and the identification of Tsc1 candidate genes provide a foundation for map-based cloning of Tsc1.

7.
Front Genet ; 13: 835781, 2022.
Article in English | MEDLINE | ID: mdl-35281841

ABSTRACT

Most genomic prediction models are linear regression models that assume continuous and normally distributed phenotypes, but responses to diseases such as stripe rust (caused by Puccinia striiformis f. sp. tritici) are commonly recorded in ordinal scales and percentages. Disease severity (SEV) and infection type (IT) data in germplasm screening nurseries generally do not follow these assumptions. On this regard, researchers may ignore the lack of normality, transform the phenotypes, use generalized linear models, or use supervised learning algorithms and classification models with no restriction on the distribution of response variables, which are less sensitive when modeling ordinal scores. The goal of this research was to compare classification and regression genomic selection models for skewed phenotypes using stripe rust SEV and IT in winter wheat. We extensively compared both regression and classification prediction models using two training populations composed of breeding lines phenotyped in 4 years (2016-2018 and 2020) and a diversity panel phenotyped in 4 years (2013-2016). The prediction models used 19,861 genotyping-by-sequencing single-nucleotide polymorphism markers. Overall, square root transformed phenotypes using ridge regression best linear unbiased prediction and support vector machine regression models displayed the highest combination of accuracy and relative efficiency across the regression and classification models. Furthermore, a classification system based on support vector machine and ordinal Bayesian models with a 2-Class scale for SEV reached the highest class accuracy of 0.99. This study showed that breeders can use linear and non-parametric regression models within their own breeding lines over combined years to accurately predict skewed phenotypes.

8.
Front Genet ; 13: 831020, 2022.
Article in English | MEDLINE | ID: mdl-35173770

ABSTRACT

Soft white wheat is a wheat class used in foreign and domestic markets to make various end products requiring specific quality attributes. Due to associated cost, time, and amount of seed needed, phenotyping for the end-use quality trait is delayed until later generations. Previously, we explored the potential of using genomic selection (GS) for selecting superior genotypes earlier in the breeding program. Breeders typically measure multiple traits across various locations, and it opens up the avenue for exploring multi-trait-based GS models. This study's main objective was to explore the potential of using multi-trait GS models for predicting seven different end-use quality traits using cross-validation, independent prediction, and across-location predictions in a wheat breeding program. The population used consisted of 666 soft white wheat genotypes planted for 5 years at two locations in Washington, United States. We optimized and compared the performances of four uni-trait- and multi-trait-based GS models, namely, Bayes B, genomic best linear unbiased prediction (GBLUP), multilayer perceptron (MLP), and random forests. The prediction accuracies for multi-trait GS models were 5.5 and 7.9% superior to uni-trait models for the within-environment and across-location predictions. Multi-trait machine and deep learning models performed superior to GBLUP and Bayes B for across-location predictions, but their advantages diminished when the genotype by environment component was included in the model. The highest improvement in prediction accuracy, that is, 35% was obtained for flour protein content with the multi-trait MLP model. This study showed the potential of using multi-trait-based GS models to enhance prediction accuracy by using information from previously phenotyped traits. It would assist in speeding up the breeding cycle time in a cost-friendly manner.

9.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-34751373

ABSTRACT

To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01× sequence coverage, which was slightly lower than the accuracy obtained using the 0.5× sequence coverage (96.6%). Compared to Beagle, on average, PHG imputation was ∼3.5% (P-value < 2 × 10-14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with independent 2× GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.


Subject(s)
Polymorphism, Single Nucleotide , Triticum , Animals , Exome , Genotype , Haplotypes/genetics , Information Storage and Retrieval , Triticum/genetics
10.
Plant Genome ; 14(3): e20158, 2021 11.
Article in English | MEDLINE | ID: mdl-34719886

ABSTRACT

Traits with a complex unknown genetic architecture are common in breeding programs. However, they pose a challenge for selection due to a combination of complex environmental and pleiotropic effects that impede the ability to create mapping populations to characterize the trait's genetic basis. One such trait, seedling emergence of wheat (Triticum aestivum L.) from deep planting, presents a unique opportunity to explore the best method to use and implement genetic selection (GS) models to predict a complex trait. Seventeen GS models were compared using two training populations, consisting of 473 genotypes from a diverse association mapping panel phenotyped from 2015 to 2019 and the other training population consisting of 643 breeding lines phenotyped in 2015 and 2020 in Lind, WA, with 40,368 markers. There were only a few significant differences between GS models, with support vector machines reaching the highest accuracy of 0.56 in a single breeding line trial using cross-validations. However, the consistent moderate accuracy of the parametric models indicates little advantage of using nonparametric models within individual years, but the nonparametric models show a slight increase in accuracy when combing years for complex traits. There was an increase in accuracy using cross-validations from 0.40 to 0.41 using diversity panels lines to breeding lines. Overall, our study showed that breeders can accurately predict and implement GS for a complex trait by using nonparametric machine learning models within their own breeding programs with increased accuracy as they combine training populations over the years.


Subject(s)
Multifactorial Inheritance , Plant Breeding , Genomics , Models, Genetic , Triticum/genetics
11.
Front Plant Sci ; 12: 713667, 2021.
Article in English | MEDLINE | ID: mdl-34421966

ABSTRACT

Disease resistance in plants is mostly quantitative, with both major and minor genes controlling resistance. This research aimed to optimize genomic selection (GS) models for use in breeding programs that are needed to select both major and minor genes for resistance. In this study, stripe rust (Puccinia striiformis Westend. f. sp. tritici Erikss.) of wheat (Triticum aestivum L.) was used as a model for quantitative disease resistance. The quantitative nature of stripe rust is usually phenotyped with two disease traits, infection type (IT) and disease severity (SEV). We compared two types of training populations composed of 2,630 breeding lines (BLs) phenotyped in single-plot trials from 4 years (2016-2020) and 475 diversity panel (DP) lines from 4 years (2013-2016), both across two locations. We also compared the accuracy of models using four different major gene markers and genome-wide association study (GWAS) markers as fixed effects. The prediction models used 31,975 markers that are replicated 50 times using a 5-fold cross-validation. We then compared GS models using a marker-assisted selection (MAS) to compare the prediction accuracy of the markers alone and in combination. GS models had higher accuracies than MAS and reached an accuracy of 0.72 for disease SEV. The major gene and GWAS markers had only a small to nil increase in the prediction accuracy more than the base GS model, with the highest accuracy increase of 0.03 for the major markers and 0.06 for the GWAS markers. There was a statistical increase in the accuracy using the disease SEV trait, BLs, population type, and combining years. There was also a statistical increase in the accuracy using the major markers in the validation sets as the mean accuracy decreased. The inclusion of fixed effects in low prediction scenarios increased the accuracy up to 0.06 for GS models using significant GWAS markers. Our results indicate that GS can accurately predict quantitative disease resistance in the presence of major and minor genes.

12.
Biology (Basel) ; 10(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34356544

ABSTRACT

Breeding for grain yield, biotic and abiotic stress resistance, and end-use quality are important goals of wheat breeding programs. Screening for end-use quality traits is usually secondary to grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping. Genomic selection provides an alternative to predict performance using genome-wide markers under forward and across location predictions, where a previous year's dataset can be used to build the models. Due to large datasets in breeding programs, we explored the potential of the machine and deep learning models to predict fourteen end-use quality traits in a winter wheat breeding program. The population used consisted of 666 wheat genotypes screened for five years (2015-19) at two locations (Pullman and Lind, WA, USA). Nine different models, including two machine learning (random forest and support vector machine) and two deep learning models (convolutional neural network and multilayer perceptron) were explored for cross-validation, forward, and across locations predictions. The prediction accuracies for different traits varied from 0.45-0.81, 0.29-0.55, and 0.27-0.50 under cross-validation, forward, and across location predictions. In general, forward prediction accuracies kept increasing over time due to increments in training data size and was more evident for machine and deep learning models. Deep learning models were superior over the traditional ridge regression best linear unbiased prediction (RRBLUP) and Bayesian models under all prediction scenarios. The high accuracy observed for end-use quality traits in this study support predicting them in early generations, leading to the advancement of superior genotypes to more extensive grain yield trails. Furthermore, the superior performance of machine and deep learning models strengthens the idea to include them in large scale breeding programs for predicting complex traits.

13.
Theor Appl Genet ; 134(8): 2547-2559, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34052883

ABSTRACT

KEY MESSAGE: The novel super-soft kernel phenotype has the potential to improve wheat processing and flour quality. We identified genomic regions associated with this kernel texture in white winter wheat. Grain hardness is a key determinant of wheat milling and baking quality. The recently discovered 'super-soft' kernel phenotype has the potential to improve wheat processing and flour quality. However, the genetic basis underlying the super-soft trait in wheat is not yet well understood. In this study, we investigated the phenotypic and genotypic structure of the super-soft trait in a collection of 172 advanced soft white winter wheat breeding lines and cultivars adapted to the Pacific Northwest region of the USA. This collection had a continuous distribution for grain hardness index (single-kernel characterization system). Ten super-soft genotypes showed hardness index ≤ 12 including the cultivar Jasper. Over 98,000 SNP markers from genotyping-by-sequencing were used for association mapping (GWAS). The GWAS identified 20 significant markers associated with grain hardness. These significant SNPs corresponded to seven QTL on chromosomes 2B, 3A, 3B, 5A, 6B,7A, and one unaligned chromosome. Two of these QTL, QSKhard.wql-3A and QSKhard.wql-5A, had large effects and distinguished between the normal soft and the super-soft classes. QSKhard.wql-3A and QSKhard.wql-5A reduced the hardness index by 11.7 and 13.1 on average, respectively. The remaining QTL had small effects and reduced grain hardness within the normal soft range. QSKhard.wql-2B, QSKhard.wql-3A, QSKhard.wql-3B, and QSKhard.wql-6B were not previously reported to be in genomic regions of grain hardness-related genes/QTL. The identified super-soft genotypes as well as the SNPs associated with lower grain hardness will be useful to assist breeding for this grain texture trait.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/growth & development , Triticum/genetics , Genome-Wide Association Study , Plant Breeding
14.
Front Plant Sci ; 12: 613300, 2021.
Article in English | MEDLINE | ID: mdl-33643347

ABSTRACT

Genomics and high throughput phenomics have the potential to revolutionize the field of wheat (Triticum aestivum L.) breeding. Genomic selection (GS) has been used for predicting various quantitative traits in wheat, especially grain yield. However, there are few GS studies for grain protein content (GPC), which is a crucial quality determinant. Incorporation of secondary correlated traits in GS models has been demonstrated to improve accuracy. The objectives of this research were to compare performance of single and multi-trait GS models for predicting GPC and grain yield in wheat and to identify optimal growth stages for collecting secondary traits. We used 650 recombinant inbred lines from a spring wheat nested association mapping (NAM) population. The population was phenotyped over 3 years (2014-2016), and spectral information was collected at heading and grain filling stages. The ability to predict GPC and grain yield was assessed using secondary traits, univariate, covariate, and multivariate GS models for within and across cycle predictions. Our results indicate that GS accuracy increased by an average of 12% for GPC and 20% for grain yield by including secondary traits in the models. Spectral information collected at heading was superior for predicting GPC, whereas grain yield was more accurately predicted during the grain filling stage. Green normalized difference vegetation index had the largest effect on the prediction of GPC either used individually or with multiple indices in the GS models. An increased prediction ability for GPC and grain yield with the inclusion of secondary traits demonstrates the potential to improve the genetic gain per unit time and cost in wheat breeding.

15.
Front Plant Sci ; 12: 772907, 2021.
Article in English | MEDLINE | ID: mdl-35154175

ABSTRACT

Unknown genetic architecture makes it difficult to characterize the genetic basis of traits and associated molecular markers because of the complexity of small effect quantitative trait loci (QTLs), environmental effects, and difficulty in phenotyping. Seedling emergence of wheat (Triticum aestivum L.) from deep planting, has a poorly understood genetic architecture, is a vital factor affecting stand establishment and grain yield, and is historically correlated with coleoptile length. This study aimed to dissect the genetic architecture of seedling emergence while accounting for correlated traits using one multi-trait genome-wide association study (MT-GWAS) model and three single-trait GWAS (ST-GWAS) models. The ST-GWAS models included one single-locus model [mixed-linear model (MLM)] and two multi-locus models [fixed and random model circulating probability unification (FarmCPU) and Bayesian information and linkage-disequilibrium iteratively nested keyway (BLINK)]. We conducted GWAS using two populations. The first population consisted of 473 varieties from a diverse association mapping panel phenotyped from 2015 to 2019. The second population consisted of 279 breeding lines phenotyped in 2015 in Lind, WA, with 40,368 markers. We also compared the inclusion of coleoptile length and markers associated with reduced height as covariates in our ST-GWAS models. ST-GWAS found 107 significant markers across 19 chromosomes, while MT-GWAS found 82 significant markers across 14 chromosomes. The FarmCPU and BLINK models, including covariates, were able to identify many small effect markers while identifying large effect markers on chromosome 5A. By using multi-locus model breeding, programs can uncover the complex nature of traits to help identify candidate genes and the underlying architecture of a trait, such as seedling emergence.

16.
Plants (Basel) ; 9(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113921

ABSTRACT

Winter wheat (Triticum aestivum L.) undergoes a period of cold acclimation in order to survive the ensuing winter, which can bring freezing temperatures and snow mold infection. Tolerance of these stresses is conferred in part by accumulation of carbohydrates in the crown region. This study investigates the contributions of carbohydrate accumulation during a cold treatment among wheat lines that differ in their snow mold tolerance (SMT) or susceptibility (SMS) and freezing tolerance (FrT) or susceptibility (FrS). Two parent varieties and eight recombinant inbred lines (RILs) were analyzed. The selected RILs represent four combinations of tolerance: SMT/FrT, SMT/FrS, SMS/FrT, and SMS/FrS. It is hypothesized that carbohydrate accumulation and transcript expression will differ between sets of RILs. Liquid chromatography with a refractive index detector was used to quantify carbohydrate content at eight time points over the cold treatment period. Polysaccharide and sucrose content differed between SMT and SMS RILs at various time points, although there were no significant differences in glucose or fructose content. Glucose and fructose content differed between FrT and FrS RILs in this study, but no significant differences in polysaccharide or sucrose content. RNAseq was used to investigate differential transcript expression, followed by modular enrichment analysis, to reveal potential candidates for other mechanisms of tolerance, which included expected pathways such as oxidative stress, chitinase activity, and unexpected transcriptional pathways. These differences in carbohydrate accumulation and differential transcript expression begin to give insight into the differences of wheat lines when exposed to cold temperatures.

17.
Genes (Basel) ; 11(7)2020 07 11.
Article in English | MEDLINE | ID: mdl-32664601

ABSTRACT

Achieving optimal predictive ability is key to increasing the relevance of implementing genomic selection (GS) approaches in plant breeding programs. The potential of an item-based collaborative filtering (IBCF) recommender system in the context of multi-trait, multi-environment GS has been explored. Different GS scenarios for IBCF were evaluated for a diverse population of winter wheat lines adapted to the Pacific Northwest region of the US. Predictions across years through cross-validations resulted in improved predictive ability when there is a high correlation between environments. Using multiple spectral traits collected from high-throughput phenotyping resulted in better GS accuracies for grain yield (GY) compared to using only single traits for predictions. Trait adjustments through various Bayesian regression models using genomic information from SNP markers was the most effective in achieving improved accuracies for GY, heading date, and plant height among the GS scenarios evaluated. Bayesian LASSO had the highest predictive ability compared to other models for phenotypic trait adjustments. IBCF gave competitive accuracies compared to a genomic best linear unbiased predictor (GBLUP) model for predicting different traits. Overall, an IBCF approach could be used as an alternative to traditional prediction models for important target traits in wheat breeding programs.


Subject(s)
Genome, Plant/genetics , Genomics , Selection, Genetic/genetics , Triticum/genetics , Bayes Theorem , Edible Grain/genetics , Edible Grain/growth & development , Genotype , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Triticum/growth & development
18.
PLoS One ; 15(4): e0221603, 2020.
Article in English | MEDLINE | ID: mdl-32343696

ABSTRACT

Increased genetic gain for complex traits in plant breeding programs can be achieved through different selection strategies. The objective of this study was to compare potential gains for grain yield in a winter wheat breeding program through estimating response to selection R values across several selection approaches including phenotypic (PS), marker-based (MS), genomic (GS), and a combination of PS and GS (PS+GS). Ten populations of Washington State University (WSU) winter wheat breeding lines including a diversity panel and F5 and double haploid lines evaluated from 2015 to 2019 growing seasons for grain yield in Lind and Pullman, WA, USA were used in the study. Selection was conducted by selecting the top 20% of lines based on observed yield (PS strategy), genomic estimated breeding values (GS), presence of yield "enhancing" alleles of the most significant single nucleotide polymorphism (SNP) markers identified from genome-wide association mapping (MS), and high observed yield and estimated breeding values (PS+GS). Overall, PS compared to other individual selection strategies (MS and GS) showed the highest mean response (R = 0.61) within the same environment. When combined with GS, a 23% improvement in R for yield was observed, indicating that gains could be improved by complementing traditional PS with GS within the same environment. Validating selection strategies in different environments resulted in low to negative R values indicating the effects of genotype-by-environment interactions for grain yield. MS was not successful in terms of R relative to the other selection approaches; using this strategy resulted in a significant (P < 0.05) decrease in response to selection compared with the other approaches. An integrated PS+GS approach could result in optimal genetic gain within the same environment, whereas a PS strategy might be a viable option for grain yield validated in different environments. Altogether, we demonstrated that gains through increased response to selection for yield could be achieved in the WSU winter wheat breeding program by implementing different selection strategies either exclusively or in combination.


Subject(s)
Plant Breeding/methods , Triticum/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Genome, Plant , Genomics , Haploidy , Polymorphism, Single Nucleotide , Seasons , Selection, Genetic , Triticum/genetics
19.
Front Plant Sci ; 11: 613325, 2020.
Article in English | MEDLINE | ID: mdl-33469463

ABSTRACT

Genomic selection (GS) is transforming the field of plant breeding and implementing models that improve prediction accuracy for complex traits is needed. Analytical methods for complex datasets traditionally used in other disciplines represent an opportunity for improving prediction accuracy in GS. Deep learning (DL) is a branch of machine learning (ML) which focuses on densely connected networks using artificial neural networks for training the models. The objective of this research was to evaluate the potential of DL models in the Washington State University spring wheat breeding program. We compared the performance of two DL algorithms, namely multilayer perceptron (MLP) and convolutional neural network (CNN), with ridge regression best linear unbiased predictor (rrBLUP), a commonly used GS model. The dataset consisted of 650 recombinant inbred lines (RILs) from a spring wheat nested association mapping (NAM) population planted from 2014-2016 growing seasons. We predicted five different quantitative traits with varying genetic architecture using cross-validations (CVs), independent validations, and different sets of SNP markers. Hyperparameters were optimized for DL models by lowering the root mean square in the training set, avoiding model overfitting using dropout and regularization. DL models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross and independent validations for all five traits used in this study. Furthermore, MLP produces 5% higher prediction accuracy than CNN for grain yield and grain protein content. Altogether, DL approaches obtained better prediction accuracy for each trait, and should be incorporated into a plant breeder's toolkit for use in large scale breeding programs.

20.
Int J Mol Sci ; 21(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881728

ABSTRACT

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Subject(s)
Selection, Genetic , Triticum/genetics , Edible Grain/genetics , Edible Grain/metabolism , Genome, Plant , Genotype , Phenotype , Principal Component Analysis , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL