Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(22): 222501, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34889627

ABSTRACT

Mass and angle distributions for the ^{52}Cr+^{198}Pt and ^{54}Cr+^{196}Pt reactions (both forming ^{250}No) were measured and subtracted, giving new information on fast quasifission mass evolution, and the first direct determination of the dependence of sticking times on angular momentum. TDHF calculations showed good agreement with average experimental values, but experimental mass distributions unexpectedly extended to symmetric splits while the peak yield remained close to the initial masses. This implies a strong role of fluctuations in mass division early in the collision, giving insights into the transition from fast energy dissipative deep-inelastic collisions to quasifission.

2.
Phys Rev Lett ; 122(23): 232503, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298876

ABSTRACT

Superheavy elements are formed in fusion reactions which are hindered by fast nonequilibrium processes. To quantify these, mass-angle distributions and cross sections have been measured, at beam energies from below-barrier to 25% above, for the reactions of ^{48}Ca, ^{50}Ti, and ^{54}Cr with ^{208}Pb. Moving from ^{48}Ca to ^{54}Cr leads to a drastic fall in the symmetric fission yield, which is reflected in the measured mass-angle distribution by the presence of competing fast nonequilibrium deep inelastic and quasifission processes. These are responsible for reduction of the compound nucleus formation probablity P_{CN} (as measured by the symmetric-peaked fission cross section), by a factor of 2.5 for ^{50}Ti and 15 for ^{54}Cr in comparison to ^{48}Ca. The energy dependence of P_{CN} indicates that cold fusion reactions (involving ^{208}Pb) are not driven by a diffusion process.

3.
Phys Rev Lett ; 120(2): 022501, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29376683

ABSTRACT

Energy dissipative processes play a key role in how quantum many-body systems dynamically evolve toward equilibrium. In closed quantum systems, such processes are attributed to the transfer of energy from collective motion to single-particle degrees of freedom; however, the quantum many-body dynamics of this evolutionary process is poorly understood. To explore energy dissipative phenomena and equilibration dynamics in one such system, an experimental investigation of deep-inelastic and fusion-fission outcomes in the ^{58}Ni+^{60}Ni reaction has been carried out. Experimental outcomes have been compared to theoretical predictions using time dependent Hartree-Fock and time dependent random phase approximation approaches, which, respectively, incorporate one-body energy dissipation and fluctuations. Excellent quantitative agreement has been found between experiment and calculations, indicating that microscopic models incorporating one-body dissipation and fluctuations provide a potential tool for exploring dissipation in low-energy heavy ion collisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...