Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611459

ABSTRACT

Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils.

2.
Plants (Basel) ; 12(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36986913

ABSTRACT

Improving plant ability to acquire and efficiently utilize phosphorus (P) is a promising approach for developing sustainable pasture production. This study aimed to identify ryegrass cultivars with contrasting P use efficiency, and to assess their associated biochemical and molecular responses. Nine ryegrass cultivars were hydroponically grown under optimal (0.1 mM) or P-deficient (0.01 mM) conditions, and P uptake, dry biomass, phosphorus acquisition efficiency (PAE) and phosphorus utilization efficiency (PUE) were evaluated. Accordingly, two cultivars with high PAE but low PUE (Ansa and Stellar), and two cultivars with low PAE and high PUE (24Seven and Extreme) were selected to analyze the activity and gene expression of acid phosphatases (APases), as well as the transcript levels of P transporters. Our results showed that ryegrass cultivars with high PAE were mainly influenced by root-related responses, including the expression of genes codifying for the P transporter LpPHT1;4, purple acid phosphatase LpPAP1 and APase activity. Moreover, the traits that contributed greatly to enhanced PUE were the expression of LpPHT1;1/4 and LpPHO1;2, and the APase activity in shoots. These outcomes could be useful to evaluate and develop cultivars with high P-use efficiency, thus contributing to improve the management of P in grassland systems.

3.
Plants (Basel) ; 10(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34961201

ABSTRACT

Volcanic ash-derived soils are characterized by low pH (pH ≤ 5.5) with increased concentrations of aluminum (Al3+) and manganese (Mn2+), which decreases plant growth, fruit quality, and yield. Methyl jasmonate (MeJA) improves abiotic stress tolerance. Our work aimed to evaluate the application of MeJA's impact on the growth, antioxidant defense, and fruit quality of highbush blueberry grown under Al and Mn toxicity. A field assay was conducted with four-year-old bushes of highbush blueberry cultivar Legacy under eight treatments (Control, Al (87% of Al saturation), Mn (240 mg kg-1), and Al-Mn with and without MeJA application). Physiological, biochemical, and fruit quality parameters were measured. Growth rate significantly decreased with Al (20%), Mn (45%), and Al-Mn (40%). MeJA application recovered the growth rate. Photosynthetic parameters were not affected. Antioxidant activity increased under all treatments compared with controls, being higher with MeJA application. Total phenols (TP) were decreased in plants under Al (43%) and Mn (20%) compared with controls. MeJA application increased TP in all treatments. Fruits of bushes under Al and Mn toxicity with MeJA applications exhibited an increase in fruit firmness and weight, maintaining suitable contents of soluble solids. Our results provide insights about the beneficial effect of MeJA application on growth, antioxidant properties, and fruit quality of highbush blueberry plants grown in acid soils under Al and Mn toxicity.

4.
Plant Physiol Biochem ; 169: 236-248, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34808466

ABSTRACT

Phosphorus (P) deficiency affects agricultural systems by limiting crop quality and yield. Studies have suggested that silicon (Si) improves P uptake in plants grown under P deficiency. However, the effects of Si on photosynthesis and carbohydrate metabolism under P stress remain unclear. We performed a hydroponic study using two wheat cultivars with contrasting sensitivity to P deficiency (Púrpura, sensitive; Fritz, semi-tolerant) that were exposed to P (0, 0.01, or 0.1 mM) and Si (0 or 2 mM), and we evaluated the photosynthetic performance and metabolic alterations. In plants from the sensitive cultivar undergoing P deficiency, Si application increased sucrose levels, starch breakdown and length of shoots, and also improved plant dry weight. In Fritz (the semi-tolerant cultivar), Si exposure reduced P concentration, and increased shoot length and P use efficiency (PUE) under P shortage. Interestingly, Si application altered cell wall composition, which was associated with higher mesophyll conductance and net CO2 assimilation in Fritz plants grown under P stress. Together, our results indicate that under P deficiency, Si nutrition positively affects photosynthesis and carbohydrate levels in a genotype-dependent manner. Furthermore, these results suggest that Si plays an important role in maintaining high photosynthetic rates in wheat plants undergoing P deficiency.


Subject(s)
Silicon , Triticum , Carbohydrate Metabolism , Phosphorus , Photosynthesis , Plant Leaves , Silicon/pharmacology
5.
Plant Physiol Biochem ; 163: 308-316, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33895436

ABSTRACT

The silicon (Si) uptake system of two ryegrass (Lolium perenne L.) cultivars was characterised by assessing the concentration- and time-dependent kinetics. Additionally, a Si transporter gene was isolated from ryegrass and their expression pattern was analysed. The concentration-dependent kinetics was examined in Jumbo and Nui cultivars supplied with 0, 0.5, 1.0, 2.0, and 4.0 mM Si and harvested at 24 h and 21 d. The time-dependent kinetics was evaluated at 0, 0.5, or 2 mM Si doses after 0, 3, 6, 9, 12, and 24 h. RACE-PCR was performed to isolate a full-length sequence codifying for a Si transporter, and semi-quantitative and quantitative RT-PCR was used to analyse its expression pattern. Differential Si uptake between ryegrass cultivars was found. Moreover, Lineweaver-Burk linearization showed similar Vmax values between cultivars; however, different Km suggested that Jumbo and Nui may have different affinities for silicic acid. The dissimilarities in Km between cultivars might involve either the differential contribution of known proteins responsible for Si uptake and transport or the involvement of undiscovered Si transporters. We identified a putative Si transporter from ryegrass Nui (LpLsi1), which was only expressed in roots and down-regulated by Si supply. The predicted amino acid sequence of LpLsi1 did not only show a high similarity and close phylogenetic relationship with monocot Si influx transporters but also indicated that it is a membrane protein possessing a high conservation of domains essential for silicic acid selectivity. Our findings provide evidence of LpLsi1 in ryegrass, which supports its high Si accumulation capacity.


Subject(s)
Lolium , Lolium/genetics , Phylogeny , Plant Proteins/genetics , Plant Roots , Silicon
6.
Plant Physiol Biochem ; 158: 396-409, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33248899

ABSTRACT

The aim was to identify the effects of AM symbiosis on the expression patterns of genes associated with K+ and Na+ compartmentalization and translocation and on K+/Na+ homeostasis in some lettuce (Lactuca sativa) cultivars as well as the effects of the relative abundance of plant AQPs on plant water status. Two AM fungi species (Funneliformis mosseae and Claroideoglomus lamellosum) isolated from the hyper-arid Atacama Desert (northern Chile) were inoculated to two lettuce cultivars (Grand Rapids and Lollo Bionda), and watered with 0 and 60 mM NaCl. At 60 days of plant growth, the AM symbiotic development, biomass production, nutrient content (Pi, Na+, K+), physiological parameters, gene expressions of ion channels and transporters (NHX and HKT1), and aquaporins proteins abundance (phosphorylated and non-phosphorylated) were evaluated. Salinity increased the AM root colonization by both inocula. AM lettuce plants showed an improved growth, increased relative water content and improved of K/Na ratio in root. In Grand Rapids cultivar, the high efficiency of photosystem II was higher than Lollo Bionda cultivar; on the contrary, stomatal conductance was higher in Lollo Bionda. Nevertheless, both parameters were increased by AM colonization. In the same way, LsaHKT1;1, LsaHKT1;6, LsaNHX2, LsaNHX4, LsaNHX6 and LsaNHX8 genes and aquaporins PIP2 were up-regulated differentially by both AM fungi. The improved plant growth was closely related to a higher water status due to increased PIP2 abundance, as well as to the upregulation of LsaNHX gene expression, which concomitantly improved plant nutrition and K+/Na+ homeostasis maintenance.


Subject(s)
Aquaporins , Cation Transport Proteins/genetics , Lactuca/microbiology , Lactuca/physiology , Mycorrhizae/physiology , Salinity , Aquaporins/genetics , Cations , Chile , Fungi/physiology , Gene Expression Regulation, Plant , Plant Roots/microbiology , Symbiosis
7.
Mycorrhiza ; 27(7): 639-657, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28647757

ABSTRACT

At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.


Subject(s)
Mycorrhizae/physiology , Osmotic Pressure , Plant Physiological Phenomena , Plants/microbiology , Water/metabolism , Agriculture , Antioxidants , Gene Expression , Photosynthesis , Plants/genetics
8.
Front Plant Sci ; 8: 642, 2017.
Article in English | MEDLINE | ID: mdl-28487719

ABSTRACT

Silicon (Si) has been well documented to alleviate aluminum (Al) toxicity in vascular plants. However, the mechanisms underlying these responses remain poorly understood. Here, we assessed the effect of Si on the modulation of Si/Al uptake and the antioxidant performance of ryegrass plants hydroponically cultivated with Al (0 and 0.2 mM) in combination with Si (0, 0.5, and 2.0 mM). Exposure to Al significantly increased Al concentration, mainly in the roots, with a consequent reduction in root growth. However, Si applied to the culture media steadily diminished the Al concentration in ryegrass, which was accompanied by an enhancement in root dry matter production. A reduced concentration of Si in plant tissues was also observed when plants were simultaneously supplied with Al and Si. Interestingly, Si transporter genes (Lsi1 and Lsi2) were down-regulated in roots after Si or Al was applied alone; however, both Lsi1 and Lsi2 were up-regulated as a consequence of Si application to Al-treated plants, denoting that there is an increase in Si requirement in order to cope with Al stress in ryegrass. Whereas Al addition triggered lipid peroxidation, Si contributed to an attenuation of Al-induced oxidative stress by increasing phenols concentration and modulating the activities of superoxide dismutase (SOD), catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes. Differential changes in gene expression of SOD isoforms (Mn-SOD, Cu/Zn-SOD, and Fe-SOD) and the profile of peroxide (H2O2) generation were also induced by Si in Al-stressed plants. This, to the best of our knowledge, is the first study to present biochemical and molecular evidence supporting the effect of Si on the alleviation of Al toxicity in ryegrass plants.

9.
Planta ; 242(1): 23-37, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26007688

ABSTRACT

MAIN CONCLUSION: So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.


Subject(s)
Acids/pharmacology , Minerals/metabolism , Plant Vascular Bundle/metabolism , Silicon/pharmacology , Stress, Physiological/drug effects , Biological Transport/drug effects , Plant Vascular Bundle/drug effects
10.
Chemosphere ; 131: 164-70, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25840120

ABSTRACT

The Freundlich model and the Constant Capacitance Model (CCM) were used to describe silicon (Si) and phosphorus (P) sorption, both individually and for binary P-Si systems, on two Andisols with different chemical properties: Freire soil (FS) and Piedras Negras soil (PNS). Silicon sorption kinetics were examined through the Elovich equation, revealing that the initial sorption rate was 16 times greater in PNS. The Freundlich equation provides a good fit to the sorption data for both Andisols. When compared with FS, larger Si sorption capacity and lower Si affinity for the surface sites were observed in PNS; nevertheless, Si sorption decreased in both soils as P sorption increased. Slight reductions in P sorption capacity due to the presence of Si were found, whereas there was no apparent effect on P bonding intensity. The CCM was able to describe Si adsorption, and potentiometric titrations support that Si seems to be specifically sorbed mainly onto sites of negative charge. Comparable log KSiint values were obtained for both soils, indicating that Si was bound on similar sites. Phosphorus sorption was well described by the CCM, and log KPint denoted strong interactions of P with the surface sites. For binary systems, log KPint did not vary with increasing Si concentration; comparatively, log KSiint scarcely decreased with increasing P concentration in PNS, but a 28% reduction was found in FS at the highest initial P concentration.


Subject(s)
Models, Theoretical , Phosphorus/chemistry , Silicon/chemistry , Soil/chemistry , Adsorption , Kinetics , Soil Pollutants/analysis
11.
Plant Physiol Biochem ; 73: 77-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24077292

ABSTRACT

Manganese (Mn) toxicity limits plant growth in acid soils. Although Mn toxicity induces oxidative stress, the role of superoxide dismutase (SOD, EC.1.15.1.1) isoforms in conferring Mn tolerance remains unclear. Seedlings of ryegrass cultivars Nui (Mn-sensitive) and Kingston (Mn-tolerant) were hydroponically grown at 2.4 (optimal) or 750 µM Mn (toxic) concentration, and harvested from 2 to 48 h. Kingston showed higher shoot Mn than Nui at 2.4 µM Mn. At toxic supply, shoot Mn concentration steadily increased in both cultivars, with Kingston having the highest accumulation at 48 h. An early (2 h) increase in lipid peroxidation under Mn excess occurred, but it returned (after 6 h) to the basal level in Kingston only. Kingston exhibited higher SOD activity than Nui, and that difference increased due to toxic Mn. In general, Mn-induced gene expression of Mn- and Cu/Zn-SOD isoforms was higher in Nui than Kingston. Nevertheless, under Mn excess, we found a greater Fe-SOD up-regulation (up to 5-fold) in Kingston compared to Nui. Thus, Fe-SOD induction in Kingston might explain, at least partly, its high tolerance to Mn toxicity. This is the first evidence that Mn toxicity causes differential gene expression of SOD isoforms in ryegrass cultivars in the short-term.


Subject(s)
Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Lolium/genetics , Manganese/adverse effects , Oxidative Stress , Plant Proteins/genetics , Superoxide Dismutase/genetics , Gene Expression/drug effects , Genes, Plant , Lipid Peroxidation , Lolium/classification , Lolium/metabolism , Manganese/metabolism , Oxidation-Reduction , Plant Proteins/metabolism , Plant Shoots/metabolism , Protein Isoforms , Seedlings , Species Specificity , Superoxide Dismutase/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...