Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cardiovasc Revasc Med ; 55: 33-41, 2023 10.
Article in English | MEDLINE | ID: mdl-37127480

ABSTRACT

BACKGROUND: Treatment of unprotected severely calcified left main coronary artery (LMCA) disease is a complex interventional procedure. Intravascular lithotripsy (IVL) and rotational atherectomy (RA) are safe and effective methods of treating coronary calcification in the non-LMCA setting. This retrospective analysis assessed the feasibility of IVL versus RA in unprotected LMCA disease. METHODS: We analyzed IVL and RA procedures performed at a large tertiary hospital in the Northeast of England from January 1, 2019 to April 31, 2022. Major safety and efficacy endpoints were procedural and angiographic success, defined by stent delivery with <50 % residual stenosis and without clinical or angiographic complications, respectively. Another important clinical endpoint was the composite of major adverse cardiac events (MACE) at 1 year. RESULTS: From 242 patients, 44 had LMCA IVL, 81 had LMCA RA and 117 had non-LMCA IVL. Patients with LMCA disease were older and more likely to have aortic stenosis. IVL was a second-line or bailout technique in 86.4 % LMCA and 92.2 % non-LMCA cases. Procedural and angiographic success rates were ≥ 84 % across all groups (p > 0.05). In 3 LMCA IVL and 3 LMCA RA cases arrhythmias and cardiac tamponade complicated the procedures respectively. At 1 year, MACE occurred in 10/44 (22.7 %) LMCA IVL, 16/81 (19.8 %) LMCA RA and 25/117 (21.4 %) cases (p > 0.05). CONCLUSION: In our single center retrospective analysis, IVL is feasible in unprotected calcified LMCA as a second-line and third-line adjuvant calcium modification technique. Its use in unprotected calcified LMCA disease should be formalized with the undertaking of large randomized controlled trials.


Subject(s)
Coronary Artery Disease , Lithotripsy , Vascular Calcification , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Coronary Artery Disease/etiology , Retrospective Studies , Treatment Outcome , Vascular Calcification/diagnostic imaging , Vascular Calcification/therapy , Vascular Calcification/etiology , Lithotripsy/adverse effects
2.
Eur Heart J Cardiovasc Imaging ; 24(6): 759-767, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36662130

ABSTRACT

AIMS: Bioprosthetic aortic valve degeneration demonstrates pathological similarities to aortic stenosis. Lipoprotein(a) [Lp(a)] is a well-recognized risk factor for incident aortic stenosis and disease progression. The aim of this study is to investigate whether serum Lp(a) concentrations are associated with bioprosthetic aortic valve degeneration. METHODS AND RESULTS: In a post hoc analysis of a prospective multimodality imaging study (NCT02304276), serum Lp(a) concentrations, echocardiography, contrast-enhanced computed tomography (CT) angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) were assessed in patients with bioprosthetic aortic valves. Patients were also followed up for 2 years with serial echocardiography. Serum Lp(a) concentrations [median 19.9 (8.4-76.4) mg/dL] were available in 97 participants (mean age 75 ± 7 years, 54% men). There were no baseline differences across the tertiles of serum Lp(a) concentrations for disease severity assessed by echocardiography [median peak aortic valve velocity: highest tertile 2.5 (2.3-2.9) m/s vs. lower tertiles 2.7 (2.4-3.0) m/s, P = 0.204], or valve degeneration on CT angiography (highest tertile n = 8 vs. lower tertiles n = 12, P = 0.552) and 18F-NaF PET (median tissue-to-background ratio: highest tertile 1.13 (1.05-1.41) vs. lower tertiles 1.17 (1.06-1.53), P = 0.889]. After 2 years of follow-up, there were no differences in annualized change in bioprosthetic hemodynamic progression [change in peak aortic valve velocity: highest tertile [0.0 (-0.1-0.2) m/s/year vs. lower tertiles 0.1 (0.0-0.2) m/s/year, P = 0.528] or the development of structural valve degeneration. CONCLUSION: Serum lipoprotein(a) concentrations do not appear to be a major determinant or mediator of bioprosthetic aortic valve degeneration.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Heart Valve Prosthesis , Male , Humans , Aged , Aged, 80 and over , Female , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve/pathology , Prospective Studies , Lipoprotein(a) , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Echocardiography/adverse effects , Heart Valve Prosthesis/adverse effects , Bioprosthesis/adverse effects
3.
Circulation ; 144(17): 1396-1408, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34455857

ABSTRACT

BACKGROUND: Major uncertainties remain regarding disease activity within the retained native aortic valve, and regarding bioprosthetic valve durability, after transcatheter aortic valve implantation (TAVI). We aimed to assess native aortic valve disease activity and bioprosthetic valve durability in patients with TAVI in comparison with subjects with bioprosthetic surgical aortic valve replacement (SAVR). METHODS: In a multicenter cross-sectional observational cohort study, patients with TAVI or bioprosthetic SAVR underwent baseline echocardiography, computed tomography angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography. Participants (n=47) were imaged once with 18F-NaF positron emission tomography/computed tomography either at 1 month (n=9, 19%), 2 years (n=22, 47%), or 5 years (16, 34%) after valve implantation. Patients subsequently underwent serial echocardiography to assess for changes in valve hemodynamic performance (change in peak aortic velocity) and evidence of structural valve dysfunction. Comparisons were made with matched patients with bioprosthetic SAVR (n=51) who had undergone the same imaging protocol. RESULTS: In patients with TAVI, native aortic valves demonstrated 18F-NaF uptake around the outside of the bioprostheses that showed a modest correlation with the time from TAVI (r=0.36, P=0.023). 18F-NaF uptake in the bioprosthetic leaflets was comparable between the SAVR and TAVI groups (target-to-background ratio, 1.3 [1.2-1.7] versus 1.3 [1.2-1.5], respectively; P=0.27). The frequencies of imaging evidence of bioprosthetic valve degeneration at baseline were similar on echocardiography (6% versus 8%, respectively; P=0.78), computed tomography (15% versus 14%, respectively; P=0.87), and positron emission tomography (15% versus 29%, respectively; P=0.09). Baseline 18F-NaF uptake was associated with a subsequent change in peak aortic velocity for both TAVI (r=0.7, P<0.001) and SAVR (r=0.7, P<0.001). On multivariable analysis, 18F-NaF uptake was the only predictor of peak velocity progression (P<0.001). CONCLUSIONS: In patients with TAVI, native aortic valves demonstrate evidence of ongoing active disease. Across imaging modalities, TAVI degeneration is of similar magnitude to bioprosthetic SAVR, suggesting comparable midterm durability. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02304276.


Subject(s)
Aortic Valve Disease/physiopathology , Heart Valve Prosthesis/standards , Transcatheter Aortic Valve Replacement/methods , Aged , Aged, 80 and over , Cohort Studies , Cross-Sectional Studies , Disease Progression , Female , Humans , Male
4.
Circulation ; 143(25): 2418-2427, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33913339

ABSTRACT

BACKGROUND: Valvular calcification is central to the pathogenesis and progression of aortic stenosis, with preclinical and observational studies suggesting that bone turnover and osteoblastic differentiation of valvular interstitial cells are important contributory mechanisms. We aimed to establish whether inhibition of these pathways with denosumab or alendronic acid could reduce disease progression in aortic stenosis. METHODS: In a single-center, parallel group, double-blind randomized controlled trial, patients >50 years of age with calcific aortic stenosis (peak aortic jet velocity >2.5 m/s) were randomized 2:1:2:1 to denosumab (60 mg every 6 months), placebo injection, alendronic acid (70 mg once weekly), or placebo capsule. Participants underwent serial assessments with Doppler echocardiography, computed tomography aortic valve calcium scoring, and 18F-sodium fluoride positron emission tomography and computed tomography. The primary end point was the calculated 24-month change in aortic valve calcium score. RESULTS: A total of 150 patients (mean age, 72±8 years; 21% women) with calcific aortic stenosis (peak aortic jet velocity, 3.36 m/s [2.93-3.82 m/s]; aortic valve calcium score, 1152 AU [655-2065 AU]) were randomized and received the allocated trial intervention: denosumab (n=49), alendronic acid (n=51), and placebo (injection n=25, capsule n=25; pooled for analysis). Serum C-terminal telopeptide, a measure of bone turnover, halved from baseline to 6 months with denosumab (0.23 [0.18-0.33 µg/L] to 0.11 µg/L [0.08-0.17 µg/L]) and alendronic acid (0.20 [0.14-0.28 µg/L] to 0.09 µg/L [0.08-0.13 µg/L]) but was unchanged with placebo (0.23 [0.17-0.30 µg/L] to 0.26 µg/L [0.16-0.31 µg/L]). There were no differences in 24-month change in aortic valve calcium score between denosumab and placebo (343 [198-804 AU] versus 354 AU [76-675 AU]; P=0.41) or alendronic acid and placebo (326 [138-813 AU] versus 354 AU [76-675 AU]; P=0.49). Similarly, there were no differences in change in peak aortic jet velocity or 18F-sodium fluoride aortic valve uptake. CONCLUSIONS: Neither denosumab nor alendronic acid affected progression of aortic valve calcification in patients with calcific aortic stenosis. Alternative pathways and mechanisms need to be explored to identify disease-modifying therapies for the growing population of patients with this potentially fatal condition. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02132026.


Subject(s)
Alendronate/therapeutic use , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/drug therapy , Bone Density Conservation Agents/therapeutic use , Denosumab/therapeutic use , Disease Progression , Aged , Aged, 80 and over , Aortic Valve Stenosis/metabolism , Double-Blind Method , Female , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Treatment Outcome , Vascular Calcification/diagnostic imaging , Vascular Calcification/drug therapy , Vascular Calcification/metabolism
7.
J Am Coll Cardiol ; 73(10): 1107-1119, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30871693

ABSTRACT

BACKGROUND: Bioprosthetic aortic valve degeneration is increasingly common, often unheralded, and can have catastrophic consequences. OBJECTIVES: The authors sought to assess whether 18F-fluoride positron emission tomography (PET)-computed tomography (CT) can detect bioprosthetic aortic valve degeneration and predict valve dysfunction. METHODS: Explanted degenerate bioprosthetic valves were examined ex vivo. Patients with bioprosthetic aortic valves were recruited into 2 cohorts with and without prosthetic valve dysfunction and underwent in vivo contrast-enhanced CT angiography, 18F-fluoride PET, and serial echocardiography during 2 years of follow-up. RESULTS: All ex vivo, degenerate bioprosthetic valves displayed 18F-fluoride PET uptake that colocalized with tissue degeneration on histology. In 71 patients without known bioprosthesis dysfunction, 14 had abnormal leaflet pathology on CT, and 24 demonstrated 18F-fluoride PET uptake (target-to-background ratio 1.55 [interquartile range (IQR): 1.44 to 1.88]). Patients with increased 18F-fluoride uptake exhibited more rapid deterioration in valve function compared with those without (annualized change in peak transvalvular velocity 0.30 [IQR: 0.13 to 0.61] vs. 0.01 [IQR: -0.05 to 0.16] ms-1/year; p < 0.001). Indeed 18F-fluoride uptake correlated with deterioration in all the conventional echocardiographic measures of valve function assessed (e.g., change in peak velocity, r = 0.72; p < 0.001). Each of the 10 patients who developed new overt bioprosthesis dysfunction during follow-up had evidence of 18F-fluoride uptake at baseline (target-to-background ratio 1.89 [IQR: 1.46 to 2.59]). On multivariable analysis, 18F-fluoride uptake was the only independent predictor of future bioprosthetic dysfunction. CONCLUSIONS: 18F-fluoride PET-CT identifies subclinical bioprosthetic valve degeneration, providing powerful prediction of subsequent valvular dysfunction and highlighting patients at risk of valve failure. This technique holds major promise in the diagnosis of valvular degeneration and the surveillance of patients with bioprosthetic valves. (18F-Fluoride Assessment of Aortic Bioprosthesis Durability and Outcome [18F-FAABULOUS]; NCT02304276).


Subject(s)
Aortic Valve Insufficiency , Aortic Valve Stenosis/surgery , Aortic Valve , Bioprosthesis , Heart Valve Prosthesis , Positron Emission Tomography Computed Tomography/methods , Postoperative Complications , Prosthesis Failure/adverse effects , Aged , Aortic Valve/physiopathology , Aortic Valve/surgery , Aortic Valve Insufficiency/diagnosis , Aortic Valve Insufficiency/etiology , Aortic Valve Stenosis/diagnosis , Calcinosis/diagnosis , Calcinosis/etiology , Computed Tomography Angiography/methods , Echocardiography/methods , Female , Fluorodeoxyglucose F18/pharmacology , Humans , Male , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Predictive Value of Tests , Prognosis , Radiopharmaceuticals/pharmacology
8.
JACC Cardiovasc Imaging ; 12(1): 135-145, 2019 01.
Article in English | MEDLINE | ID: mdl-30448122

ABSTRACT

OBJECTIVES: This study investigated processes causing leaflet thickening and structural valve degeneration (SVD). BACKGROUND: Although transcatheter aortic valve replacement (TAVR) has changed the treatment of aortic stenosis, concerns remain regarding SVD, potentially related to valve thrombosis and thickening, based on studies using computed tomography (CT). Detailed histological analyses are provided to help attain insights into these processes. METHODS: Explanted transcatheter heart valves (THVs) were evaluated for thrombosis, fibrosis, and calcification for quantification of leaflet thickness. Immunohistochemical and microscopy approaches were used to investigate SVD-associated mechanisms. RESULTS: THVs (n = 23) were obtained from 22 patients (median 81 years of age; 50% male) from 0 to 2,583 days post TAVR. Maximal leaflet thickness increased relative to implant duration (ρ = 0.427; p = 0.027). THVs explanted after >2 years were thicker than those explanted after <2 years (p = 0.007). All THVs had adherent thrombus on both aortic and ventricular sides, which beyond 60 days was seen in combination with fibrosis and beyond 4 years had calcification. Early thrombus formation (<60 days) occurred despite rapid endothelialization with an abnormal hyperplastic phenotype. Fibrosis was observed in 6 patients on both the aortic and the ventricular THV surfaces, remodeled over time, and was associated with matrix metalloproteinase-1 expression. Five THVs showed overt calcification associated with adherent thrombus and fibrosis. CONCLUSIONS: There is a time-dependent degeneration of THVs consisting of thrombus formation, endothelial hyperplasia, fibrosis, tissue remodeling, proteinase expression, and calcification. Future investigation is needed to further understand these mechanisms contributing to leaflet thickening and SVD.


Subject(s)
Aortic Valve/pathology , Aortic Valve/surgery , Heart Valve Prosthesis , Prosthesis Failure , Transcatheter Aortic Valve Replacement/instrumentation , Aged , Aged, 80 and over , Aortic Valve/enzymology , Calcinosis/etiology , Calcinosis/pathology , Device Removal , Endothelial Cells/pathology , Female , Fibrosis , Humans , Male , Matrix Metalloproteinase 1/metabolism , Prosthesis Design , Registries , Retrospective Studies , Thrombosis/etiology , Thrombosis/pathology , Time Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
10.
Circ Cardiovasc Imaging ; 9(10)2016 Oct.
Article in English | MEDLINE | ID: mdl-27733431

ABSTRACT

BACKGROUND: 18F-Fluoride positron emission tomography (PET) and computed tomography (CT) can measure disease activity and progression in aortic stenosis. Our objectives were to optimize the methodology, analysis, and scan-rescan reproducibility of aortic valve 18F-fluoride PET-CT imaging. METHODS AND RESULTS: Fifteen patients with aortic stenosis underwent repeated 18F-fluoride PET-CT. We compared nongated PET and noncontrast CT, with a modified approach that incorporated contrast CT and ECG-gated PET. We explored a range of image analysis techniques, including estimation of blood-pool activity at differing vascular sites and a most diseased segment approach. Contrast-enhanced ECG-gated PET-CT permitted localization of 18F-fluoride uptake to individual valve leaflets. Uptake was most commonly observed at sites of maximal mechanical stress: the leaflet tips and the commissures. Scan-rescan reproducibility was markedly improved using enhanced analysis techniques leading to a reduction in percentage error from ±63% to ±10% (tissue to background ratio MDS mean of 1.55, bias -0.05, limits of agreement -0·20 to +0·11). CONCLUSIONS: Optimized 18F-fluoride PET-CT allows reproducible localization of calcification activity to different regions of the aortic valve leaflet and commonly to areas of increased mechanical stress. This technique holds major promise in improving our understanding of the pathophysiology of aortic stenosis and as a biomarker end point in clinical trials of novel therapies. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02132026.


Subject(s)
Aortic Valve Stenosis/diagnostic imaging , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Calcinosis/diagnostic imaging , Fluorodeoxyglucose F18/administration & dosage , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/administration & dosage , Aged , Aged, 80 and over , Aortic Valve/physiopathology , Aortic Valve Stenosis/physiopathology , Calcinosis/physiopathology , Cardiac-Gated Imaging Techniques , Contrast Media/administration & dosage , Electrocardiography , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , Reproducibility of Results , Scotland , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...