Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 15(7): 100275, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34120075

ABSTRACT

Understanding the variations of muscle and plasma metabolites in response to high environmental temperature can provide important information on the molecular mechanisms related to body energy homeostasis in heat-stressed broiler chickens. In this study, we investigated the effect of chronic heat stress conditions on the breast muscle (Pectoralis major) and plasma metabolomics profile of broiler chickens by means of an innovative, high-throughput analytical approach such as the proton nuclear magnetic resonance (1H NMR) spectrometry. A total of 300 Ross 308 male chicks were split into two experimental groups and raised in either thermoneutral conditions for the entire rearing cycle (0-41 days) (TNT group; six replicates of 25 birds/each) or exposed to chronic heat stress conditions (30 °C for 24 h/day) from 35 to 41 days (CHS group; six replicates of 25 birds/each). At processing (41 days), plasma and breast muscle samples were obtained from 12 birds/experimental group and then subjected to 1H NMR analysis. The reduction of BW and feed intake as well as the increase in rectal temperature and heterophil: lymphocyte ratio confirmed that our experimental model was able to stimulate a thermal stress response without significantly affecting mortality. The 1H NMR analysis revealed that a total of 26 and 19 molecules, mostly related to energy and protein metabolism as well as antioxidant response, showed significantly different concentrations respectively in the breast muscle and plasma in response to the thermal challenge. In conclusion, the results obtained in this study indicated that chronic heat stress significantly modulates the breast muscle and plasma metabolome in fast-growing broiler chickens, allowing to delineate potential metabolic changes that can have important implications in terms of body energy homeostasis, growth performance and product quality.


Subject(s)
Chickens , Heat Stress Disorders , Animals , Heat Stress Disorders/veterinary , Heat-Shock Response , Hot Temperature , Male , Metabolomics , Pectoralis Muscles
2.
Poult Sci ; 100(2): 1273-1282, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518084

ABSTRACT

Chicken meat is rich in unsaturated fatty acids. Therefore, it is more susceptible to lipid oxidation and production of volatile organic compounds (VOC). In this study, we evaluated the fatty acids, antioxidants, and VOC profiles of raw and cooked meat samples derived from 4 strains of chicken differing in their growth rates, which were as follows: slow-growing (SG, Leghorn), medium-growing (MG, Hubbard and Naked Neck), and fast-growing (FG, Ross). The VOC profile of meat was measured using proton-transfer reaction-mass spectrometry (PTR-MS). The VOC were identified using PTR-time of flight-MS (PTR-ToF-MS). The data were analyzed using both univariate and multivariate models. Twenty main VOC were identified, which were classified into the following chemical categories: aldehydes, alkadienes, alkenes, furans, amides, alcohols, and other compounds. Our results revealed that the chicken genotype and the method of cooking strongly influenced the VOC profile of the meat. Identifying the relationships between these traits allowed us to highlight the trade-off of the main substrates such as n-3 and n-6 polyunsaturated fatty acids (PUFA), protective substances (antioxidants), and degradation products (VOC) of the poultry meat produced during cooking. The extent of VOC production and n-3 loss was found to be higher for the SG genotype. Reduction of n-6 was higher in MG, whereas small losses in antioxidants and PUFA were observed in the FG genotype, consequently, resulting in the lowest production of VOC. The SG and MG are genotypes more active from a kinetic point of view respect to the FG ones. For this reason, in the FG genotypes, the antioxidants are less involved in the oxidative stress induced by the movement; thus, they were available to protect the lipid of the meat during the cooking process. These results suggested that the use of SG and MG genotypes requires a specific dietary protocol (i.e., increasing the antioxidants content) to counteract the lipid oxidations in all the phases: in vivo, postmortem, and during/after cooking.


Subject(s)
Antioxidants/analysis , Fatty Acids/analysis , Meat/analysis , Volatile Organic Compounds/analysis , Animals , Chickens/classification , Cooking , Lipid Peroxidation , Oxidative Stress , Principal Component Analysis , Thiobarbituric Acid Reactive Substances/analysis , Tocopherols/analysis
3.
Animal ; 11(4): 705-712, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27819218

ABSTRACT

Flaxseed is a rich source of α-linolenic acid and phytoestrogens, mainly lignans, whose metabolites (enterodiol and enterolactone) can affect estrogen functions. The present study evaluated the influence of dietary flaxseed supplementation on reproductive performance and egg characteristics (fatty acids, cholesterol, lignans and isoflavones) of 40 Hy-Line hens (20/group) fed for 23 weeks a control diet or the same diet supplemented with 10% of extruded flaxseed. The flaxseed diet had approximately three times the content of lignans (2608.54 ng/g) as the control diet, mainly secoisolariciresinol diglucoside (1534.24 v. 494.72 ng/g). When compared with the control group, hens fed flaxseed showed a similar deposition rate (72.0% v. 73.9%) and egg yield. Furthermore, there was no effect of flaxseed on the main chemical composition of the egg and on its cholesterol content. Estradiol was higher in the plasma of the control group (1419.00 v. 1077.01 pg/ml) probably due to the effect of flaxseed on phytoestrogen metabolites. The plasma lignans were higher in hens fed flaxseed, whereas isoflavones were lower, mainly due to the lower equol value (50.52 v. 71.01 ng/ml). A similar trend was shown in eggs: the flaxseed group had higher level of enterodiol and enterolactone, whereas the equol was lower (198.31 v. 142.02 ng/g yolk). Secoisolariciresinol was the main lignan in eggs of the flaxseed group and its concentration was three times higher then control eggs. Flaxseed also improved the n-3 long-chain polyunsaturated fatty acids of eggs (3.25 v. 0.92 mg/g egg), mainly DHA, however, its oxidative status (thiobarbituric reactive substances) was negatively affected. In conclusion, 10% dietary flaxseed did not affect the productive performance of hens or the yolk cholesterol concentration, whereas the lignans and n-3 polyunsaturated fatty acid content of eggs improved. Further details on the competition between the different dietary phytoestrogens and their metabolites (estrogen, equol, enterodiol and enterolactone) should be investigated.


Subject(s)
Chickens/physiology , Cholesterol/analysis , Dietary Supplements , Fatty Acids, Omega-3/analysis , Flax/chemistry , Phytoestrogens/analysis , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/analysis , Animal Feed/analysis , Animals , Butylene Glycols , Diet/veterinary , Eggs/analysis , Fatty Acids/analysis , Female , Isoflavones/analysis , Lignans/analysis , Seeds/chemistry , alpha-Linolenic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...