Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Appl Behav Anal ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804601

ABSTRACT

There are several considerations to address when conducting functional communication training for challenging behavior in a school setting, such as the need for schedule thinning and maintenance across staff and the need to establish a variety of appropriate classroom skills. There are several strategies for conducting schedule thinning following functional communication training and for transferring effects across people or settings. However, there are few examples of these processes in natural settings with relevant caregivers and with long-term maintenance of effects. We implemented a functional assessment and skill-based treatment process with six children with autism in a specialized school setting and extended treatment until challenging behavior was reduced to near-zero levels across multiple staff and settings. Follow-up data indicate that effects were still observed 1 year posttreatment and the use of crisis procedures (e.g., physical restraint) was eliminated for all participants.

2.
Am J Hematol ; 99(6): 1103-1107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572662

ABSTRACT

Hyperleukocytosis is an emergency of acute leukemia leading to blood hyperviscosity, potentially resulting in life-threatening microvascular obstruction, or leukostasis. Due to the high number of red cells in the circulation, hematocrit/hemoglobin levels (Hct/Hgb) are major drivers of blood viscosity, but how Hct/Hgb mediates hyperviscosity in acute leukemia remains unknown. In vivo hemorheological studies are difficult to conduct and interpret due to issues related to visualizing and manipulating the microvasculature. To that end, a multi-vessel microfluidic device recapitulating the size-scale and geometry of the microvasculature was designed to investigate how Hct/Hgb interacts with acute leukemia to induce "in vitro" leukostasis. Using patient samples and cell lines, the degree of leukostasis was different among leukemia immunophenotypes with respect to white blood cell (WBC) count and Hct/Hgb. Among lymphoid immunophenotypes, severe anemia is protective against in vitro leukostasis and Hct/Hgb thresholds became apparent above which in vitro leukostasis significantly increased, to a greater extent with B-cell acute lymphoblastic leukemia (ALL) versus T-cell ALL. In vitro leukostasis in acute myeloid leukemia was primarily driven by WBC with little interaction with Hct/Hgb. This sets the stage for prospective clinical studies assessing how red cell transfusion may affect leukostasis risk in immunophenotypically different acute leukemia patients.


Subject(s)
Blood Viscosity , Erythrocyte Transfusion , Humans , Microvessels , Leukostasis/etiology , Hematocrit , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/blood , Female , Male , Hemoglobins/analysis
3.
Sci Adv ; 9(48): eadj6423, 2023 12.
Article in English | MEDLINE | ID: mdl-38019922

ABSTRACT

Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.


Subject(s)
Anemia, Sickle Cell , Erythrocytes , Humans , Hemodynamics , Computer Simulation
4.
Ecol Evol ; 13(11): e10706, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37953983

ABSTRACT

Human-mediated environmental change, by reducing mean fitness, is hypothesized to strengthen selection on traits that mediate interactions among species. For example, human-mediated declines in pollinator populations are hypothesized to reduce mean seed production by increasing the magnitude of pollen limitation and thus strengthen pollinator-mediated selection on floral traits that increase pollinator attraction or pollen transfer efficiency. To test this hypothesis, we measured two female fitness components and six floral traits of Lobelia siphilitica plants exposed to supplemental hand-pollination, ambient open-pollination, or reduced open-pollination treatments. The reduced treatment simulated pollinator decline, while the supplemental treatment was used to estimate pollen limitation and pollinator-mediated selection. We found that plants in the reduced pollination treatment were significantly pollen limited, resulting in pollinator-mediated selection for taller inflorescences and more vibrant petals, both traits that could increase pollinator attraction. This contrasts with plants in the ambient pollination treatment, where reproduction was not pollen limited and there was not significant pollinator-mediated selection on any floral trait. Our results support the hypothesis that human-mediated environmental change can strengthen selection on traits of interacting species and suggest that these traits have the potential to evolve in response to changing environments.

5.
Nat Commun ; 14(1): 5022, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596311

ABSTRACT

While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods.


Subject(s)
Artificial Intelligence , Microfluidics , Microscopy , Software , Blood Cells
6.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37293094

ABSTRACT

Red blood cell (RBC) disorders affect billions worldwide. While alterations in the physical properties of aberrant RBCs and associated hemodynamic changes are readily observed, in conditions such as sickle cell disease and iron deficiency, RBC disorders can also be associated with vascular dysfunction. The mechanisms of vasculopathy in those diseases remain unclear and scant research has explored whether biophysical alterations of RBCs can directly affect vascular function. Here we hypothesize that the purely physical interactions between aberrant RBCs and endothelial cells, due to the margination of stiff aberrant RBCs, play a key role in this phenomenon for a range of disorders. This hypothesis is tested by direct simulations of a cellular scale computational model of blood flow in sickle cell disease, iron deficiency anemia, COVID-19, and spherocytosis. We characterize cell distributions for normal and aberrant RBC mixtures in straight and curved tubes, the latter to address issues of geometric complexity that arise in the microcirculation. In all cases aberrant RBCs strongly localize near the vessel walls (margination) due to contrasts in cell size, shape, and deformability from the normal cells. In the curved channel, the distribution of marginated cells is very heterogeneous, indicating a key role for vascular geometry. Finally, we characterize the shear stresses on the vessel walls; consistent with our hypothesis, the marginated aberrant cells generate large transient stress fluctuations due to the high velocity gradients induced by their near-wall motions. The anomalous stress fluctuations experienced by endothelial cells may be responsible for the observed vascular inflammation.

7.
Mil Med ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36705463

ABSTRACT

INTRODUCTION: Personnel engaged in high-stakes occupations, such as military personnel, law enforcement, and emergency first responders, must sustain performance through a range of environmental stressors. To maximize the effectiveness of military personnel, an a priori understanding of traits can help predict their physical and cognitive performance under stress and adversity. This work developed and assessed a suite of measures that have the potential to predict performance during operational scenarios. These measures were designed to characterize four specific trait-based domains: cognitive, health, physical, and social-emotional. MATERIALS AND METHODS: One hundred and ninety-one active duty U.S. Army soldiers completed interleaved questionnaire-based, seated task-based, and physical task-based measures over a period of 3-5 days. Redundancy analysis, dimensionality reduction, and network analyses revealed several patterns of interest. RESULTS: First, unique variable analysis revealed a minimally redundant battery of instruments. Second, principal component analysis showed that metrics tended to cluster together in three to five components within each domain. Finally, analyses of cross-domain associations using network analysis illustrated that cognitive, health, physical, and social-emotional domains showed strong construct solidarity. CONCLUSIONS: The present battery of metrics presents a fieldable toolkit that may be used to predict operational performance that can be clustered into separate components or used independently. It will aid predictive algorithm development aimed to identify critical predictors of individual military personnel and small-unit performance outcomes.

8.
Proc Natl Acad Sci U S A ; 120(1): e2203228120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36580593

ABSTRACT

Understanding the causes and limits of population divergence in phenotypic traits is a fundamental aim of evolutionary biology, with the potential to yield predictions of adaptation to environmental change. Reciprocal transplant experiments and the evaluation of optimality models suggest that local adaptation is common but not universal, and some studies suggest that trait divergence is highly constrained by genetic variances and covariances of complex phenotypes. We analyze a large database of population divergence in plants and evaluate whether evolutionary divergence scales positively with standing genetic variation within populations (evolvability), as expected if genetic constraints are evolutionarily important. We further evaluate differences in divergence and evolvability-divergence relationships between reproductive and vegetative traits and between selfing, mixed-mating, and outcrossing species, as these factors are expected to influence both patterns of selection and evolutionary potentials. Evolutionary divergence scaled positively with evolvability. Furthermore, trait divergence was greater for vegetative traits than for floral (reproductive) traits, but largely independent of the mating system. Jointly, these factors explained ~40% of the variance in evolutionary divergence. The consistency of the evolvability-divergence relationships across diverse species suggests substantial predictability of trait divergence. The results are also consistent with genetic constraints playing a role in evolutionary divergence.


Subject(s)
Adaptation, Physiological , Biological Evolution , Reproduction , Phenotype , Acclimatization , Plants/genetics , Genetic Variation , Flowers/genetics
9.
Am J Bot ; 110(1): e16106, 2023 01.
Article in English | MEDLINE | ID: mdl-36401558

ABSTRACT

PREMISE: Pollinator decline, by reducing seed production, is predicted to strengthen natural selection on floral traits. However, the effect of pollinator decline on gender dimorphic species (such as gynodioecious species, where plants produce female or hermaphrodite flowers) may differ between the sex morphs: if pollinator decline reduces the seed production of females more than hermaphrodites, then it should also have a larger effect on selection on floral traits in females than in hermaphrodites. METHODS: To simulate pollinator decline, we experimentally reduced pollinator access to female and hermaphrodite Lobelia siphilitica plants. We compared the seed production of plants in the reduced pollination treatment to plants that were exposed to ambient pollination conditions. Within each treatment, we also measured directional selection on four floral traits of females and hermaphrodites. RESULTS: Experimentally reducing pollination decreased seed production of both females and hermaphrodites by ~21%. Reducing pollination also strengthened selection on floral traits, but this effect was not larger in females than in hermaphrodites. Instead, reducing pollination intensified selection for taller inflorescences in hermaphrodites, but did not intensify selection on any floral trait in females. CONCLUSIONS: Our results suggest that pollinator decline will not have a larger effect on either seed production or selection on floral traits of female plants. As such, any effect of pollinator decline on seed production may be similar for gender dimorphic and monomorphic species. However, the potential for floral traits of females (and thus of gender dimorphic species) to evolve in response to pollinator decline may be limited.


Subject(s)
Disorders of Sex Development , Lobelia , Reproduction/physiology , Lobelia/physiology , Pollination/physiology , Seeds , Flowers/physiology
10.
iScience ; 25(7): 104606, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800766

ABSTRACT

The correlation between cardiovascular disease and iron deficiency anemia (IDA) is well documented but poorly understood. Using a multi-disciplinary approach, we explore the hypothesis that the biophysical alterations of red blood cells (RBCs) in IDA, such as variable degrees of microcytosis and decreased deformability may directly induce endothelial dysfunction via mechanobiological mechanisms. Using a combination of atomic force microscopy and microfluidics, we observed that subpopulations of IDA RBCs (idRBCs) are significantly stiffer and smaller than both healthy RBCs and the remaining idRBC population. Furthermore, computational simulations demonstrated that the smaller and stiffer idRBC subpopulations marginate toward the vessel wall causing aberrant shear stresses. This leads to increased vascular inflammation as confirmed with perfusion of idRBCs into our "endothelialized" microfluidic systems. Overall, our multifaceted approach demonstrates that the altered biophysical properties of idRBCs directly lead to vasculopathy, suggesting that the IDA and cardiovascular disease association extends beyond correlation and into causation.

11.
Plants (Basel) ; 11(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35336707

ABSTRACT

Variation in population sex ratio is particularly pronounced in gynodioecious angiosperms. Extremely high female frequencies in gynodioecious populations cannot be readily explained by selective forces alone. To assess the contributions of drift and gene flow to extreme sex-ratio variation, we documented sex ratio and population size in 92 populations of Lobelia siphilitica across its range and genotyped plants using plastid and nuclear genetic markers. Similarity in spatial patterns of genetic and demographic variables may suggest that drift and/or gene flow have contributed to population sex-ratio variation in L. siphilitica. We found strong spatial structuring of extremely high female frequencies: populations with >50% female plants are restricted to the south−central portion of the range. However, we did not detect any spatial structuring in population size nor metrics of genetic diversity, suggesting that extreme variation in female frequency is not strongly affected by drift or gene flow. Extreme sex-ratio variation is frequently observed in gynodioecious plants, but its causes are difficult to identify. Further investigation into mechanisms that create or maintain the spatial structure of sex ratios in gynodioecious species will provide much needed insight.

12.
Am J Bot ; 109(4): 526-534, 2022 04.
Article in English | MEDLINE | ID: mdl-35253215

ABSTRACT

PREMISE: Pollinator declines can reduce the quantity and quality of pollination services, resulting in less pollen deposited on flowers and lower seed production by plants. In response to these reductions, plant species that cannot autonomously self-pollinate and thus are dependent on pollinators to set seed could plastically adjust their floral traits. Such plasticity could increase the opportunity for outcross pollination directly, as well as indirectly by affecting inflorescence traits. METHODS: To test whether plants can respond to pollinator declines by plastically adjusting their floral traits, we simulated declines by experimentally reducing pollinator access to Lobelia siphilitica plants and measuring two traits of early- and late-season flowers: (1) floral longevity; and (2) sex-phase duration. To test whether plasticity in these floral traits affected inflorescence traits, we measured daily display size and phenotypic gender. RESULTS: We found that experimentally reducing pollination did not affect female-phase duration, but did extend the male-phase duration of early-season flowers by 13% and the longevity of late-season flowers by 12.8%. However, plants with an extended male phase did not have a more male-biased phenotypic gender, and plants with an extended floral longevity did not have a larger daily display. CONCLUSIONS: Our results suggest that plants can respond to pollinator declines by plastically adjusting both the longevity and sex-phase duration of their flowers. If this plasticity increases the opportunity for outcross pollination, then it could be one mechanism by which pollinator-dependent plant species maintain seed production as pollinators decline.


Subject(s)
Lobelia , Flowers/physiology , Inflorescence , Lobelia/physiology , Plants , Pollen , Pollination/physiology
13.
Biomed Opt Express ; 12(10): 6115-6128, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34745725

ABSTRACT

Neutropenia is a condition identified by an abnormally low number of neutrophils in the bloodstream and signifies an increased risk of severe infection. Cancer patients are particularly susceptible to this condition, which can be disruptive to their treatment and even life-threatening in severe cases. Thus, it is critical to routinely monitor neutrophil counts in cancer patients. However, the standard of care to assess neutropenia, the complete blood count (CBC), requires expensive and complex equipment, as well as cumbersome procedures, which precludes easy or timely access to critical hematological information, namely neutrophil counts. Here we present a simple, low-cost, fast, and robust technique to detect and grade neutropenia based on label-free multi-spectral deep-UV microscopy. Results show that the developed framework for automated segmentation and classification of live, unstained blood cells in a smear accurately differentiates patients with moderate and severe neutropenia from healthy samples in minutes. This work has significant implications towards the development of a low-cost and easy-to-use point-of-care device for tracking neutrophil counts, which can not only improve the quality of life and treatment-outcomes of many patients but can also be lifesaving.

14.
Mol Ecol ; 30(21): 5328-5342, 2021 11.
Article in English | MEDLINE | ID: mdl-34662479

ABSTRACT

Gene copy number variation (CNV) has been increasingly associated with organismal responses to environmental stress, but we know little about the quantitative relation between CNV and phenotypic variation. In this study we quantify the relation between variation in EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) copy number using digital drop PCR and variation in phenotypic glyphosate resistance in 22 populations of Amaranthus palmeri (Palmer Amaranth), a range-expanding agricultural weed. Overall, we detected a significant positive relation between population mean copy number and resistance. The majority of populations exhibited high glyphosate resistance yet maintained low-resistance individuals, resulting in bimodality in many populations. We also investigated threshold models for the relation between copy number and resistance, and found evidence for a threshold of ~15 EPSPS copies: there was a steep increase in resistance below the threshold, followed by a much shallower increase. Across 924 individuals, as copy number increased the range of variation in resistance decreased, yielding an increasing frequency of high phenotypic resistance individuals. Among populations we detected a decline in variation (s.d.) as mean phenotypic resistance increased from moderate to high, consistent with the prediction that as phenotypic resistance increases in populations, stabilizing selection decreases variation in the trait. Our study demonstrates that populations of A. palmeri can harbour wide variation in EPSPS copy number and phenotypic glyphosate resistance, reflecting the history of, and template for future, resistance evolution.


Subject(s)
Amaranthus , Herbicides , Amaranthus/genetics , DNA Copy Number Variations , Gene Dosage , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Humans , Glyphosate
15.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34355467

ABSTRACT

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Subject(s)
Masks , Plantago , Adaptation, Physiological , Biomass , Phenotype
16.
Ecology ; 102(12): e03506, 2021 12.
Article in English | MEDLINE | ID: mdl-34319595

ABSTRACT

Indirect species interactions are ubiquitous in nature, often outnumbering direct species interactions. Yet despite evidence that indirect interactions have strong ecological effects, relatively little is known about whether they can shape adaptive evolution by altering the strength and/or direction of natural selection. We tested whether indirect interactions affect the strength and direction of pollinator-mediated selection on floral traits of the bumble-bee pollinated wildflower Lobelia siphilitica. We estimated the indirect effects of two pollinator predators with contrasting hunting modes: dragonflies (Aeshnidae and Corduliidae) and ambush bugs (Phymata americana, Reduviidae). Because dragonflies are active pursuit predators, we hypothesized that they would strengthen pollinator-mediated selection by weakening plant-pollinator interactions (i.e., a density-mediated indirect effect). In contrast, because ambush bugs are sit-and-wait predators, we hypothesized that they would weaken or reverse the direction of pollinator-mediated selection by altering pollinator foraging behavior (i.e., a trait-mediated indirect effect). Specifically, if ambush bugs hunt from plants with traits that attract pollinators (i.e., prey), then pollinators will spend less time visiting those plants, weakening or reversing the direction of selection on attractive floral traits. We did not find evidence that high dragonfly abundance strengthened selection on floral traits via a density-mediated indirect effect: neither pollen limitation (a proxy for the strength of plant-pollinator interactions) nor directional selection on floral traits of L. siphilitica differed significantly between high- and low-dragonfly abundance treatments. In contrast, we did find evidence that ambush bug presence affected selection on floral traits via a trait-mediated indirect effect: ambush bugs hunted from L. siphilitica plants with larger daily floral displays, reversing the direction of pollinator-mediated selection on daily display size. These results suggest that indirect species interactions have the potential to shape adaptive evolution by altering natural selection.


Subject(s)
Flowers , Odonata , Pollination , Predatory Behavior , Animals , Bees , Phenotype , Selection, Genetic
17.
Semin Thromb Hemost ; 47(2): 120-128, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33636744

ABSTRACT

Hemostasis is a complex wound-healing process involving numerous mechanical and biochemical mechanisms and influenced by many factors including platelets, coagulation factors, and endothelial components. Slight alterations in these mechanisms can lead to either prothrombotic or bleeding consequences, and such hemostatic imbalances can lead to significant clinical consequences with resultant morbidity and mortality. An ideal hemostasis assay would not only address all the unique processes involved in clot formation and resolution but also take place under flow conditions to account for endothelial involvement. Global assays do exist; however, these assays are not flow based. Flow-based assays have been limited secondary to their large blood volume requirements and low throughput, limiting potential clinical applications. Microfluidic-based assays address the aforementioned limitations of both global and flow-based assays by utilizing standardized devices that require low blood volumes, offer reproducible analysis, and have functionality under a range of shear stresses and flow conditions. While still largely confined to the preclinical space, here we aim to discuss these novel technologies and potential clinical implications, particularly in comparison to the current, commercially available point-of-care assays.


Subject(s)
Hemostasis/immunology , Microfluidics/methods , Point-of-Care Testing/standards , Thrombosis/immunology , Humans
19.
Proc Natl Acad Sci U S A ; 117(26): 14779-14789, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32561645

ABSTRACT

Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.


Subject(s)
Blood Cell Count/methods , Microscopy, Ultraviolet/methods , Molecular Imaging/methods , Blood Cell Count/instrumentation , Blood Cells/classification , Blood Cells/cytology , Equipment Design , Humans , Microscopy, Ultraviolet/instrumentation , Molecular Imaging/instrumentation , Point-of-Care Systems
20.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32034102

ABSTRACT

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Subject(s)
Gene Flow , Genetic Variation , Plantago/genetics , Demography , Introduced Species , Phylogeny , Plantago/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...