Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Intensive Care Med Exp ; 12(1): 81, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39298036

ABSTRACT

This narrative review delves into the intricate interplay between the lungs and the kidneys, with a focus on elucidating the pathogenesis of diseases influenced by immunological factors, acid-base regulation, and blood gas disturbances, as well as assessing the effects of various therapeutic modalities on these interactions. Key disorders, such as anti-glomerular basement membrane (anti-GBM) disease, the syndrome of inappropriate antidiuretic hormone secretion (SIADH), and Anti-neutrophil Cytoplasmic Antibodies (ANCA) associated vasculitis (AAV), are also examined to shed light on their underlying mechanisms. This review also explores the relationship between acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI), emphasizing how inflammatory mediators can lead to systemic damage and impact multiple organs. In ARDS, fluid overload exacerbates pulmonary edema, while imbalances in blood volume, such as hypovolemia or hypervolemia, can precipitate renal dysfunction. The review highlights how mechanical ventilation strategies can compromise renal blood flow, trigger systemic inflammation, and induce hemodynamic and neurohormonal alterations, all contributing to lung and kidney damage. The impact of extracorporeal membrane oxygenation (ECMO) on lung-kidney interactions is evaluated, highlighting its role in severe respiratory failure and its renal implications. Emerging therapies, such as mesenchymal stem cells and extracellular vesicles, are discussed as promising avenues to mitigate organ damage and enhance outcomes in critically ill patients. Overall, this review offers a nuanced exploration of lung-kidney dynamics, bridging historical insights with contemporary perspectives. It underscores the clinical significance of these interactions in critically ill patients and advocates for integrated management approaches to optimize patient outcomes.

2.
J Extracell Vesicles ; 13(8): e12496, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113589

ABSTRACT

Parasitic diseases have a significant impact on human and animal health, representing a major hazard to the public and causing economic and health damage worldwide. Extracellular vesicles (EVs) have long been recognized as diagnostic and therapeutic tools but are now also known to be implicated in the natural history of parasitic diseases and host immune response modulation. Studies have shown that EVs play a role in parasitic disease development by interacting with parasites and communicating with other types of cells. This review highlights the most recent research on EVs and their role in several aspects of parasite-host interactions in five key parasitic diseases: Chagas disease, malaria, toxoplasmosis, leishmaniasis and helminthiases. We also discuss the potential use of EVs as diagnostic tools or treatment options for these infectious diseases.


Subject(s)
Extracellular Vesicles , Host-Parasite Interactions , Parasitic Diseases , Humans , Extracellular Vesicles/metabolism , Animals , Parasitic Diseases/therapy , Parasitic Diseases/diagnosis , Parasitic Diseases/immunology , Chagas Disease/therapy , Chagas Disease/diagnosis , Chagas Disease/immunology
3.
Curr Top Membr ; 93: 1-25, 2024.
Article in English | MEDLINE | ID: mdl-39181576

ABSTRACT

Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.


Subject(s)
Endocytosis , Humans , Animals , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Kidney/pathology , Receptors, Cell Surface/metabolism
4.
Biochim Biophys Acta Gen Subj ; 1868(10): 130684, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084330

ABSTRACT

It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.


Subject(s)
Albumins , Angiotensin II , Endocytosis , Epithelial Cells , Glucose , Kidney Tubules, Proximal , Receptor, Angiotensin, Type 1 , Endocytosis/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Angiotensin II/pharmacology , Glucose/metabolism , Glucose/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Animals , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Albumins/metabolism , Swine , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects , Cell Line , Losartan/pharmacology
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167155, 2024 06.
Article in English | MEDLINE | ID: mdl-38579939

ABSTRACT

Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.


Subject(s)
Endocytosis , Kidney Tubules, Proximal , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Endocytosis/drug effects , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Animals , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , HEK293 Cells , Swine , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , Albumins/metabolism , LLC-PK1 Cells , Epithelial Cells/metabolism , Epithelial Cells/virology
6.
Brain Res ; 1822: 148669, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37951562

ABSTRACT

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Subject(s)
Blood-Brain Barrier , Bradykinin , Cell Adhesion , Malaria, Cerebral , Malaria, Falciparum , Plasmodium falciparum , Humans , Bradykinin/metabolism , Cell Adhesion/physiology , Culture Media, Conditioned/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/physiology , Erythrocytes/parasitology , Malaria, Cerebral/metabolism , Malaria, Cerebral/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Monocytes/physiology , Plasmodium falciparum/physiology , Blood-Brain Barrier/physiopathology
7.
Cancers (Basel) ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835434

ABSTRACT

Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.

8.
Biochim Biophys Acta Gen Subj ; 1867(11): 130466, 2023 11.
Article in English | MEDLINE | ID: mdl-37742874

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). It has been proposed that modifications in the function of proximal tubule epithelial cells (PTECs) precede glomerular damage during the onset of DKD. This study aimed to identify modifications in renal sodium handling in the early stage of DM and its molecular mechanism. METHODS: Streptozotocin (STZ)-induced diabetic BALB/c mice (STZ group) and LLC-PK1 cells, a model of PTECs, were used. All parameters were assessed in the 4th week after an initial injection of STZ. RESULTS: Early stage of DKD was characterized by hyperfiltration and PTEC dysfunction. STZ group exhibited increased urinary sodium excretion due to impairment of tubular sodium reabsorption. This was correlated to a decrease in cortical (Na++K+)ATPase (NKA) α1 subunit expression and enzyme activity and an increase in O-GlcNAcylation. RNAseq analysis of patients with DKD revealed an increase in expression of the glutamine-fructose aminotransferase (GFAT) gene, a rate-limiting step of hexosamine biosynthetic pathway, and a decrease in NKA expression. Incubation of LLC-PK1 cells with 10 µM thiamet G, an inhibitor of O-GlcNAcase, reduced the expression and activity of NKA and increased O-GlcNAcylation. Furthermore, 6-diazo-5-oxo-L-norleucine (DON), a GFAT inhibitor, or dapagliflozin, an SGLT2 inhibitor, avoided the inhibitory effect of HG on expression and activity of NKA associated with the decrease in O-GlcNAcylation. CONCLUSION: Our results show that the impairment of tubular sodium reabsorption, in the early stage of DM, is due to SGLT2-mediated HG influx in PTECs, increase in O-GlcNAcylation and reduction in NKA expression and activity.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Swine , Animals , Humans , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Diabetic Nephropathies/metabolism , Sodium/metabolism , Adenosine Triphosphatases/metabolism , Diabetes Mellitus/metabolism
9.
Front Pharmacol ; 14: 1194816, 2023.
Article in English | MEDLINE | ID: mdl-37484026

ABSTRACT

Introduction: Rapamycin is an immunosuppressor that acts by inhibiting the serine/threonine kinase mechanistic target of rapamycin complex 1. Therapeutic use of rapamycin is limited by its adverse effects. Proteinuria is an important marker of kidney damage and a risk factor for kidney diseases progression and has been reported in patients and animal models treated with rapamycin. However, the mechanism underlying proteinuria induced by rapamycin is still an open matter. In this work, we investigated the effects of rapamycin on parameters of renal function and structure and on protein handling by proximal tubule epithelial cells (PTECs). Methods: Healthy BALB/c mice were treated with 1.5 mg/kg rapamycin by oral gavage for 1, 3, or 7 days. At the end of each treatment, the animals were kept in metabolic cages and renal function and structural parameters were analyzed. LLC-PK1 cell line was used as a model of PTECs to test specific effect of rapamycin. Results: Rapamycin treatment did not change parameters of glomerular structure and function. Conversely, there was a transient increase in 24-h proteinuria, urinary protein to creatinine ratio (UPCr), and albuminuria in the groups treated with rapamycin. In accordance with these findings, rapamycin treatment decreased albumin-fluorescein isothiocyanate uptake in the renal cortex. This effect was associated with reduced brush border expression and impaired subcellular distribution of megalin in PTECs. The effect of rapamycin seems to be specific for albumin endocytosis machinery because it did not modify renal sodium handling or (Na++K+)ATPase activity in BALB/c mice and in the LLC-PK1 cell line. A positive Pearson correlation was found between megalin expression and albumin uptake while an inverse correlation was shown between albumin uptake and UPCr or 24-h proteinuria. Despite its effect on albumin handling in PTECs, rapamycin treatment did not induce tubular injury measured by interstitial space and collagen deposition. Conclusion: These findings suggest that proteinuria induced by rapamycin could have a tubular rather than a glomerular origin. This effect involves a specific change in protein endocytosis machinery. Our results open new perspectives on understanding the undesired effect of proteinuria generated by rapamycin.

10.
Biochim Biophys Acta Gen Subj ; 1867(4): 130314, 2023 04.
Article in English | MEDLINE | ID: mdl-36693453

ABSTRACT

Subclinical acute kidney injury (subAKI) is characterized by tubule-interstitial injury without significant changes in glomerular function. SubAKI is associated with the pathogenesis and progression of acute and chronic kidney diseases. Currently, therapeutic strategies to treat subAKI are limited. The use of gold nanoparticles (AuNPs) has shown promising benefits in different models of diseases. However, their possible effects on subAKI are still unknown. Here, we investigated the effects of AuNPs on a mouse model of subAKI. Animals with subAKI showed increased functional and histopathologic markers of tubular injury. There were no changes in glomerular function and structure. The animals with subAKI also presented an inflammatory profile demonstrated by activation of Th1 and Th17 cells in the renal cortex. This phenotype was associated with decreased megalin-mediated albumin endocytosis and expression of proximal tubular megalin. AuNP treatment prevented tubule-interstitial injury induced by subAKI. This effect was associated with a shift to an anti-inflammatory Th2 response. Furthermore, AuNP treatment preserved megalin-mediated albumin endocytosis in vivo and in vitro. AuNPs were not nephrotoxic in healthy mice. These results suggest that AuNPs have a protective effect in the tubule-interstitial injury observed in subAKI, highlighting a promising strategy as a future antiproteinuric treatment.


Subject(s)
Acute Kidney Injury , Metal Nanoparticles , Mice , Animals , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Gold/pharmacology , Kidney Tubules, Proximal , Disease Models, Animal , Proteinuria/metabolism , Proteinuria/pathology , Albumins/metabolism , Acute Kidney Injury/metabolism
11.
Eur J Pharmacol ; 942: 175521, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36681317

ABSTRACT

Diabetic kidney disease (DKD) is characterized by progressive impairment of kidney function. It has been postulated that tubule-interstitial injury, associated with tubular albuminuria, precedes glomerular damage in the early stage of DKD. Here, we wanted to determine if the development of tubule-interstitial injury at the early stage of DKD implies modulation of megalin-mediated protein reabsorption in proximal tubule epithelial cells (PTECs) by SGLT2-dependent high glucose influx. Rats with streptozotocin (STZ)-induced diabetes were treated or not with dapagliflozin (DAPA) for 8 weeks. Four experimental groups were generated: (1) CONT, control; (2) DAPA, rats treated with DAPA; (3) STZ, diabetic rats; (4) STZ + DAPA, diabetic rats treated with DAPA. No changes in glomerular structure and function were observed. The STZ group presented proteinuria and albuminuria associated with an increase in the fractional excretion of proteins. A positive correlation between glycemia and proteinuria was found. These phenomena were linked to a decrease in luminal and total megalin expression and, consequently, in albumin reabsorption in PTECs. We also observed tubule-interstitial injury characterized by an increase in urinary tubular injury biomarkers and changes in tubular histomorphometry parameters. In addition, inverse correlations were found between cortical albumin uptake and tubule-interstitial injury or glycemia. All these modifications were attenuated in the STZ + DAPA group. These results suggest that SGLT2-dependent high glucose influx into PTECs promotes a harmful effect on the PTECs, leading to the development of tubular albuminuria and tubule-interstitial injury preceding glomerular damage. These results expand current knowledge on the renoprotective effects of gliflozins.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Rats , Animals , Diabetic Nephropathies/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Albuminuria , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Sodium-Glucose Transporter 2/metabolism , Proteins/metabolism , Albumins/metabolism , Glucose/adverse effects
12.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430671

ABSTRACT

Since the outbreak of COVID-19 disease, a bidirectional interaction between kidney disease and the progression of COVID-19 has been demonstrated. Kidney disease is an independent risk factor for mortality of patients with COVID-19 as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to the development of acute kidney injury (AKI) and chronic kidney disease (CKD) in patients with COVID-19. However, the detection of kidney damage in patients with COVID-19 may not occur until an advanced stage based on the current clinical blood and urinary examinations. Some studies have pointed out the development of subclinical acute kidney injury (subAKI) syndrome with COVID-19. This syndrome is characterized by significant tubule interstitial injury without changes in the estimated glomerular filtration rate. Despite the complexity of the mechanism(s) underlying the development of subAKI, the involvement of changes in the protein endocytosis machinery in proximal tubule (PT) epithelial cells (PTECs) has been proposed. This paper focuses on the data relating to subAKI and COVID-19 and the role of PTECs and their protein endocytosis machinery in its pathogenesis.


Subject(s)
Acute Kidney Injury , COVID-19 , Renal Insufficiency, Chronic , Humans , COVID-19/complications , SARS-CoV-2 , Acute Kidney Injury/metabolism , Renal Insufficiency, Chronic/metabolism , Kidney Tubules, Proximal/metabolism
13.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36232558

ABSTRACT

Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.


Subject(s)
Acetylglucosamine , N-Acetylglucosaminyltransferases , Acetylglucosamine/metabolism , Hexosamines/metabolism , Homeostasis , Kidney/metabolism , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational
14.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166496, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35863591

ABSTRACT

Patients with COVID-19 have high prevalence of albuminuria which is used as a marker of progression of renal disease and is associated with severe COVID-19. We hypothesized that SARS-CoV-2 spike protein (S protein) could modulate albumin handling in proximal tubule epithelial cells (PTECs) and, consequently contribute to the albuminuria observed in patients with COVID-19. In this context, the possible effect of S protein on albumin endocytosis in PTECs was investigated. Two PTEC lines were used: HEK-293A and LLC-PK1. Incubation of both cell types with S protein for 16 h inhibited albumin uptake at the same magnitude. This effect was associated with canonical megalin-mediated albumin endocytosis because: (1) DQ-albumin uptake, a marker of the lysosomal degradation pathway, was reduced at a similar level compared with fluorescein isothiocyanate (FITC)-albumin uptake; (2) dextran-FITC uptake, a marker of fluid-phase endocytosis, was not changed; (3) cell viability and proliferation were not changed. The inhibitory effect of S protein on albumin uptake was only observed when it was added at the luminal membrane, and it did not involve the ACE2/Ang II/AT1R axis. Although both cells uptake S protein, it does not seem to be required for modulation of albumin endocytosis. The mechanism underlying the inhibition of albumin uptake by S protein encompasses a decrease in megalin expression without changes in megalin trafficking and stability. These results reveal a possible mechanism to explain the albuminuria observed in patients with COVID-19.


Subject(s)
COVID-19 , Low Density Lipoprotein Receptor-Related Protein-2 , Albumins/metabolism , Albumins/pharmacology , Albuminuria/metabolism , Angiotensin-Converting Enzyme 2 , Cells, Cultured , Dextrans/pharmacology , Endocytosis/physiology , Epithelial Cells/metabolism , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , Humans , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
15.
Curr Issues Mol Biol ; 44(3): 998-1011, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35723289

ABSTRACT

Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.

16.
PLoS One ; 17(5): e0268347, 2022.
Article in English | MEDLINE | ID: mdl-35550638

ABSTRACT

1,8-Cineole is a naturally occurring compound found in essential oils of different plants and has well-known anti-inflammatory and antimicrobial activities. In the present work, we aimed to investigate its potential antimalarial effect, using the following experimental models: (1) the erythrocytic cycle of Plasmodium falciparum; (2) an adhesion assay using brain microvascular endothelial cells; and (3) an experimental cerebral malaria animal model induced by Plasmodium berghei ANKA infection in susceptible mice. Using the erythrocytic cycle of Plasmodium falciparum, we characterized the schizonticidal effect of 1,8-cineole. This compound decreased parasitemia in a dose-dependent manner with a half maximal inhibitory concentration of 1045.53 ± 63.30 µM. The inhibitory effect of 972 µM 1,8-cineole was irreversible and independent of parasitemia. Moreover, 1,8-cineole reduced the progression of intracellular development of the parasite over 2 cycles, inducing important morphological changes. Ultrastructure analysis revealed a massive loss of integrity of endomembranes and hemozoin crystals in infected erythrocytes treated with 1,8-cineole. The monoterpene reduced the adhesion index of infected erythrocytes to brain microvascular endothelial cells by 60%. Using the experimental cerebral malaria model, treatment of infected mice for 6 consecutive days with 100 mg/kg/day 1,8-cineole reduced cerebral edema with a 50% reduction in parasitemia. Our data suggest a potential antimalarial effect of 1,8-cineole with an impact on the parasite erythrocytic cycle and severe disease.


Subject(s)
Antimalarials , Brain Edema , Malaria, Cerebral , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/therapeutic use , Disease Models, Animal , Endothelial Cells , Eucalyptol/pharmacology , Malaria, Cerebral/drug therapy , Malaria, Cerebral/parasitology , Malaria, Cerebral/prevention & control , Mice , Mice, Inbred C57BL , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium berghei , Plasmodium falciparum
17.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055044

ABSTRACT

Renal proximal tubule cells (PTECs) act as urine gatekeepers, constantly and efficiently avoiding urinary protein waste through receptor-mediated endocytosis. Despite its importance, little is known about how this process is modulated in physiologic conditions. Data suggest that the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway regulates PTEC protein reabsorption. Here, we worked on the hypothesis that the physiologic albumin concentration and PI3K/AKT pathway form a positive feedback loop to expand endocytic capacity. Using LLC-PK1 cells, a model of PTECs, we showed that the PI3K/AKT pathway is required for megalin recycling and surface expression, affecting albumin uptake. Inhibition of this pathway stalls megalin at EEA1+ endosomes. Physiologic albumin concentration (0.01 mg/mL) activated AKT; this depends on megalin-mediated albumin endocytosis and requires previous activation of PI3K/mTORC2. This effect is correlated to the increase in albumin endocytosis, a phenomenon that we refer to as "albumin-induced albumin endocytosis". Mice treated with L-lysine present decreased albumin endocytosis leading to proteinuria and albuminuria associated with inhibition of AKT activity. Renal cortex explants obtained from control mice treated with MK-2206 decreased albumin uptake and promoted megalin internalization. Our data highlight the mechanism behind the capacity of PTECs to adapt albumin reabsorption to physiologic fluctuations in its filtration, avoiding urinary excretion.


Subject(s)
Epithelial Cells/metabolism , Feedback, Physiological , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Albumins/metabolism , Animals , Biomarkers , Endocytosis , Epithelial Cells/drug effects , Fluorescent Antibody Technique , Gene Expression , Kidney Tubules, Proximal/cytology , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Signal Transduction/drug effects
18.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769064

ABSTRACT

Novel strategies for the prevention and treatment of sepsis-associated acute kidney injury and its long-term outcomes have been required and remain a challenge in critical care medicine. Therapeutic strategies using lipid mediators, such as aspirin-triggered resolvin D1 (ATRvD1), can contribute to the resolution of acute and chronic inflammation. In this study, we examined the potential effect of ATRvD1 on long-term kidney dysfunction after severe sepsis. Fifteen days after cecal ligation and puncture (CLP), sepsis-surviving BALB/c mice were subjected to a tubulointerstitial injury through intraperitoneal injections of bovine serum albumin (BSA) for 7 days, called the subclinical acute kidney injury (subAKI) animal model. ATRvD1 treatment was performed right before BSA injections. On day 22 after CLP, the urinary protein/creatinine ratio (UPC), histologic parameters, fibrosis, cellular infiltration, apoptosis, inflammatory markers levels, and mRNA expression were determined. ATRvD1 treatment mitigated tubulointerstitial injury by reducing proteinuria excretion, the UPC ratio, the glomerular cell number, and extracellular matrix deposition. Pro-fibrotic markers, such as transforming growth factor ß (TGFß), type 3 collagen, and metalloproteinase (MMP)-3 and -9 were reduced after ATRvD1 administration. Post-septic mice treated with ATRvD1 were protected from the recruitment of IBA1+ cells. The interleukin-1ß (IL-1ß) levels were increased in the subAKI animal model, being attenuated by ATRvD1. Tumor necrosis factor-α (TNF-α), IL-10, and IL-4 mRNA expression were increased in the kidney of BSA-challenged post-septic mice, and it was also reduced after ATRvD1. These results suggest that ATRvD1 protects the kidney against a second insult such as BSA-induced tubulointerstitial injury and fibrosis by suppressing inflammatory and pro-fibrotic mediators in renal dysfunction after sepsis.


Subject(s)
Acute Kidney Injury/drug therapy , Aspirin/pharmacology , Docosahexaenoic Acids/pharmacology , Kidney Glomerulus/drug effects , Sepsis/drug therapy , Acute Kidney Injury/chemically induced , Albumins/pharmacology , Animals , Biomarkers/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/metabolism , Kidney Function Tests/methods , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred BALB C , Proteinuria/chemically induced , Proteinuria/drug therapy , Proteinuria/metabolism , RNA, Messenger/metabolism , Sepsis/metabolism
19.
Peptides ; 146: 170646, 2021 12.
Article in English | MEDLINE | ID: mdl-34500007

ABSTRACT

Megalin-mediated albumin endocytosis plays a critical role in albumin reabsorption in proximal tubule (PT) epithelial cells (PTECs). Some studies have pointed out the modulatory effect of bradykinin (BK) on urinary protein excretion, but its role in PT protein endocytosis has not yet been determined. Here, we studied the possible correlation between BK and albumin endocytosis in PT. Using LLC-PK1 cells, a model of PTECs, we showed that BK specifically inhibited megalin-mediated albumin endocytosis. This inhibitory effect of BK was mediated by B2 receptor (B2R) because it was abolished by HOE140, an antagonist of B2R, but it was not affected by Lys-des-Arg9-BK, an antagonist of B1. BK induced the stall of megalin in EEA1+ endosomes, but not in LAMP1+ lysosomes, leading to a decrease in surface megalin expression. In addition, we showed that BK, through B2R, activated calphostin C-sensitive protein kinase C, which mediated its effect on the surface megalin expression and albumin endocytosis. These results reveal an important modulatory mechanism of PT albumin endocytosis by BK, which opens new possibilities to understanding the effect of BK on urinary albumin excretion.


Subject(s)
Albumins/metabolism , Bradykinin/pharmacology , Endocytosis/drug effects , Kidney Tubules, Proximal/drug effects , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Animals , Cell Line , Enzyme Activation , Kidney Tubules, Proximal/metabolism , LLC-PK1 Cells , Protein Kinase C/metabolism , Receptor, Bradykinin B2/metabolism , Swine
20.
Plants (Basel) ; 10(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34371603

ABSTRACT

The essential oil of Croton zehntneri (EOCZ) and its major compounds are known to have several biological activities. However, some evidence shows potential toxic effects of high doses of EOCZ (>300 mg/kg) in amphibian and human kidneys. The aim of the present work was to investigate the effects on renal function of EOCZ at 300 mg/kg/day in healthy Swiss mice and a subclinical acute kidney injury (subAKI) animal model, which presents tubule-interstitial injury (TII). Four experimental groups were generated: (1) CONT group (control); (2) EOCZ, mice treated with EOCZ; (3) subAKI; (4) subAKI+EOCZ, subAKI treated simultaneously with EOCZ. EOCZ treatment induced TII measured by increases in (1) proteinuria; (2) cortical tubule-interstitial space; (3) macrophage infiltration; (4) collagen deposition. A decrease in tubular sodium reabsorption was also observed. These results were similar and nonadditive to those observed in the subAKI group. These data suggest that treatment with EOCZ at higher concentrations induces TII in mice, which could be mediated by protein overload in the proximal tubule.

SELECTION OF CITATIONS
SEARCH DETAIL