Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7743, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007542

ABSTRACT

Universal blind quantum computing allows users with minimal quantum resources to delegate a quantum computation to a remote quantum server, while keeping intrinsically hidden input, algorithm, and outcome. State-of-art experimental demonstrations of such a protocol have only involved one client. However, an increasing number of multi-party algorithms, e.g. federated machine learning, require the collaboration of multiple clients to carry out a given joint computation. In this work, we propose and experimentally demonstrate a lightweight multi-client blind quantum computation protocol based on a recently proposed linear quantum network configuration (Qline). Our protocol originality resides in three main strengths: scalability, since we eliminate the need for each client to have its own trusted source or measurement device, low-loss, by optimizing the orchestration of classical communication between each client and server through fast classical electronic control, and compatibility with distributed architectures while remaining intact even against correlated attacks of server nodes and malicious clients.

2.
Sci Adv ; 9(44): eadj4249, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922346

ABSTRACT

Quantum superposition of high-dimensional states enables both computational speed-up and security in cryptographic protocols. However, the exponential complexity of tomographic processes makes certification of these properties a challenging task. In this work, we experimentally certify coherence witnesses tailored for quantum systems of increasing dimension using pairwise overlap measurements enabled by a six-mode universal photonic processor fabricated with a femtosecond laser writing technology. In particular, we show the effectiveness of the proposed coherence and dimension witnesses for qudits of dimensions up to 5. We also demonstrate advantage in a quantum interrogation task and show it is fueled by quantum contextuality. Our experimental results testify to the efficiency of this approach for the certification of quantum properties in programmable integrated photonic platforms.

3.
Nat Commun ; 14(1): 909, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36808157

ABSTRACT

In a Bell experiment, it is natural to seek a causal account of correlations wherein only a common cause acts on the outcomes. For this causal structure, Bell inequality violations can be explained only if causal dependencies are modeled as intrinsically quantum. There also exists a vast landscape of causal structures beyond Bell that can witness nonclassicality, in some cases without even requiring free external inputs. Here, we undertake a photonic experiment realizing one such example: the triangle causal network, consisting of three measurement stations pairwise connected by common causes and no external inputs. To demonstrate the nonclassicality of the data, we adapt and improve three known techniques: (i) a machine-learning-based heuristic test, (ii) a data-seeded inflation technique generating polynomial Bell-type inequalities and (iii) entropic inequalities. The demonstrated experimental and data analysis tools are broadly applicable paving the way for future networks of growing complexity.

4.
Sci Adv ; 8(8): eabm1515, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35213223

ABSTRACT

Since Bell's theorem, it is known that local realism fails to explain quantum phenomena. Bell inequality violations manifestly show the incompatibility of quantum theory with classical notions of cause and effect. As recently found, however, the instrumental scenario-a pivotal tool in causal inference-allows for nonclassicality signatures going beyond this paradigm. If we are not limited to observational data and can intervene in our setup, then we can witness quantum violations of classical bounds on the causal influence among the involved variables even when no Bell-like violation is possible. That is, through interventions, the quantum behavior of a system that would seem classical can be demonstrated. Using a photonic setup-faithfully implementing the instrumental causal structure and switching between observation and intervention run by run-we experimentally witness such a nonclassicality. We also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modeling.

5.
Sci Adv ; 7(12)2021 Mar.
Article in English | MEDLINE | ID: mdl-33741595

ABSTRACT

Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.

6.
Nat Commun ; 11(1): 2467, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32424194

ABSTRACT

The launch of a satellite capable of distributing entanglement through long distances and the first loophole-free violation of Bell inequalities are milestones indicating a clear path for the establishment of quantum networks. However, nonlocality in networks with independent entanglement sources has only been experimentally verified in simple tripartite networks, via the violation of bilocality inequalities. Here, by using a scalable photonic platform, we implement star-shaped quantum networks consisting of up to five distant nodes and four independent entanglement sources. We exploit this platform to violate the chained n-locality inequality and thus witness, in a device-independent way, the emergence of nonlocal correlations among the nodes of the implemented networks. These results open new perspectives for quantum information processing applications in the relevant regime where the observed correlations are compatible with standard local hidden variable models but are non-classical if the independence of the sources is taken into account.

7.
Phys Rev Lett ; 122(1): 013601, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012655

ABSTRACT

Structured photons are nowadays an important resource in classical and quantum optics due to the richness of properties they show under propagation, focusing, and in their interaction with matter. Vectorial modes of light in particular, a class of modes where the polarization varies across the beam profile, have already been used in several areas ranging from microscopy to quantum information. One of the key ingredients needed to exploit the full potential of complex light in the quantum domain is the control of quantum interference, a crucial resource in fields like quantum communication, sensing, and metrology. Here we report a tunable Hong-Ou-Mandel interference between vectorial modes of light. We demonstrate how a properly designed spin-orbit device can be used to control quantum interference between vectorial modes of light by simply adjusting the device parameters and no need of interferometric setups. We believe our result can find applications in fundamental research and quantum technologies based on structured light by providing a new tool to control quantum interference in a compact, efficient, and robust way.

8.
Sci Adv ; 5(3): eaau1946, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30944851

ABSTRACT

The number of parameters describing a quantum state is well known to grow exponentially with the number of particles. This scaling limits our ability to characterize and simulate the evolution of arbitrary states to systems, with no more than a few qubits. However, from a computational learning theory perspective, it can be shown that quantum states can be approximately learned using a number of measurements growing linearly with the number of qubits. Here, we experimentally demonstrate this linear scaling in optical systems with up to 6 qubits. Our results highlight the power of the computational learning theory to investigate quantum information, provide the first experimental demonstration that quantum states can be "probably approximately learned" with access to a number of copies of the state that scales linearly with the number of qubits, and pave the way to probing quantum states at new, larger scales.

9.
Phys Rev Lett ; 121(14): 140501, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339412

ABSTRACT

Quantum teleportation establishes a correspondence between an entangled state shared by two separate parties that can communicate classically and the presence of a quantum channel connecting the two parties. The standard benchmark for quantum teleportation, based on the average fidelity between the input and output states, indicates that some entangled states do not lead to channels which can be certified to be quantum. It was recently shown that if one considers a finer-grained witness, then all entangled states can be certified to produce a nonclassical teleportation channel. Here we experimentally demonstrate a complete characterization of a new family of such witnesses, of the type proposed in Phys. Rev. Lett. 119, 110501 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.110501 under different conditions of noise. We report nonclassical teleportation using quantum states that cannot achieve average fidelity of teleportation above the classical limit. We further use the violation of these witnesses to estimate the negativity of the shared state. Our results have fundamental implications in quantum information protocols and may also lead to new applications and quality certification of quantum technologies.

10.
ACS Photonics ; 4(11): 2807-2812, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29250573

ABSTRACT

In classical physics, properties of objects exist independently of the context, i.e., whether and how measurements are performed. Quantum physics showed this assumption to be wrong, and that Nature is indeed "contextual". Contextuality has been observed in the simplest physical systems, such as single particles, and plays fundamental roles in quantum computation advantage. Here, we demonstrate for the first time quantum contextuality in an integrated photonic chip. The chip implements different combinations of measurements on a single photon delocalized on four distinct spatial modes, showing violations of a Clauser-Horne-Shimony-Holt (CHSH)-like noncontextuality inequality. This paves the way to compact and portable devices for contextuality-based quantum-powered protocols.

11.
Sci Rep ; 7(1): 13265, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038486

ABSTRACT

Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A complete basis of GHZ states can be constructed by properly choosing local basis rotations. We demonstrate this experimentally for the Hilbert space [Formula: see text] by entangling two photons in polarization and orbital angular momentum. Mixing GHZ states unmasks different entanglement features based on their particular local geometrical connectedness. In particular, a specific GHZ state in a complete orthonormal basis has a "twin" GHZ state for which equally mixing leads to full separability in opposition to any other basis-state. Exploiting these local geometrical relations provides a toolbox for generating specific types of multipartite entanglement, each providing different benefits in outperforming classical devices. Our experiment investigates these GHZ's properties exploiting the HMGH framework which allows us to study the geometry for the different depths of entanglement in our system and showing a good stability and fidelity thus admitting a scaling in degrees of freedom and advanced operational manipulations.

12.
Nat Commun ; 8: 14775, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300068

ABSTRACT

Bell's theorem plays a crucial role in quantum information processing and thus several experimental investigations of Bell inequalities violations have been carried out over the years. Despite their fundamental relevance, however, previous experiments did not consider an ingredient of relevance for quantum networks: the fact that correlations between distant parties are mediated by several, typically independent sources. Here, using a photonic setup, we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two distinct sources. This scenario allows for the emergence of the so-called non-bilocal correlations, incompatible with any local model involving two independent hidden variables. We experimentally witness the emergence of this kind of quantum correlations by violating a Bell-like inequality under the fair-sampling assumption. Our results provide a proof-of-principle experiment of generalizations of Bell's theorem for networks, which could represent a potential resource for quantum communication protocols.

13.
Phys Rev Lett ; 115(3): 030503, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26230776

ABSTRACT

Device-independent quantum communication will require a loophole-free violation of Bell inequalities. In typical scenarios where line of sight between the communicating parties is not available, it is convenient to use energy-time entangled photons due to intrinsic robustness while propagating over optical fibers. Here we show an energy-time Clauser-Horne-Shimony-Holt Bell inequality violation with two parties separated by 3.7 km over the deployed optical fiber network belonging to the University of Concepción in Chile. Remarkably, this is the first Bell violation with spatially separated parties that is free of the postselection loophole, which affected all previous in-field long-distance energy-time experiments. Our work takes a further step towards a fiber-based loophole-free Bell test, which is highly desired for secure quantum communication due to the widespread existing telecommunication infrastructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...