Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 323(Pt A): 575-583, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27329790

ABSTRACT

Pharmaceutical residues presence in the environment is among nowadays top emergent environmental issues. For removal of such pollutants, adsorption is a generally efficient process that can be complementary to conventional treatment. Research of cheap, widely available adsorbents may make this process economically attractive. The aim of the present work was to evaluate the capacity of two clay materials (exfoliated vermiculite, LECA) to adsorb gemfibrozil, mefenamic acid and naproxen in lab-scale batch assays. Results show that both adsorbents are able to remove the pharmaceuticals from aqueous medium. Although vermiculite exhibited higher adsorption capacities per unit mass of adsorbent, LECA yielded higher absolute removals of the pharmaceuticals due to the larger mass of adsorbent. Quantum chemistry calculations predicted that the forms of binding of the three molecules to the vermiculite surface are essentially identical, but the adsorption isotherm of naproxen differs substantially from the other two's. The linear forms of the latter impose limits at lower concentrations to the removal efficiencies of these pharmaceuticals by vermiculite, thereby electing LECA as more efficient. Notwithstanding, vermiculite's high specific adsorption capacity and also its much faster adsorption kinetics suggest that there may be some benefits in combining both materials as a composite adsorbent solution.


Subject(s)
Aluminum Silicates/chemistry , Pharmaceutical Preparations/isolation & purification , Adsorption , Clay , Computer Simulation , Drug Residues/isolation & purification , Gemfibrozil/chemistry , Gemfibrozil/isolation & purification , Kinetics , Mefenamic Acid/chemistry , Mefenamic Acid/isolation & purification , Models, Molecular , Naproxen/chemistry , Naproxen/isolation & purification , Particle Size , Thermodynamics , Waste Disposal, Fluid
2.
J Mol Model ; 20(7): 2336, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25069137

ABSTRACT

Widespread use of pharmaceuticals such as benzodiazepines has been resulting over the last decades in the dissemination of residues of these compounds in the environment, and such fact has been raising increasing concern. The generally low efficiencies of conventional wastewater treatment processes for the removal of this type of pollutants demands for the development of alternative or complementary water and wastewater treatment technologies, among which adsorption processes have been gaining popularity, provided that cheap efficient adsorbents are found. Clay materials have been one of the popular choices in this regard. In the present study, quantum chemical calculations have been performed by periodic DFT using the projector augmented-wave (PAW) method to characterize the interactions of two benzodiazepine molecules, alprazolam and diazepam, with a surface of clay mineral, vermiculite. It was observed that both molecules interact strongly with the vermiculite surface, both through a water-bridge binding and by cation-bridge provided by the exchangeable Mg(2+) cations of the vermiculite surface. The results point to an interesting potential of vermiculite to be used efficiently as filter medium to remove these pollutants from water and wastewater.

3.
J Phys Chem B ; 117(19): 5806-19, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23597397

ABSTRACT

Molecular dynamics simulations of bilayer systems consisting of varying proportions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol (Chol), and intrinsically fluorescent Chol analogues dehydroergosterol (DHE) or cholestatrienol (CTL) were carried out to study in detail the extent to which these fluorescent probes mimic Chol's behavior (location, orientation, dynamics) in membranes as well as their effect on host bilayer structure and dynamics (namely their ability to induce membrane ordering in comparison with Chol). Control properties of POPC and POPC/Chol bilayers agree well with published experimental and simulation work. Both probes and Chol share similar structural and dynamical properties within the bilayers. Additionally, the fluorescent sterols induce membrane ordering to a similar (slightly lower) extent to that of Chol. These findings combined demonstrate that the two studied fluorescent sterols are adequate analogues of Chol, and may be used with advantage over side-chain labeled sterols. The small structural differences between the three studied sterols are responsible for the slight variations in the calculated properties, with CTL presenting a more similar behavior to Chol (correlating with its larger structural similarity to Chol) compared to DHE.


Subject(s)
Cholestenes/chemistry , Cholesterol/analogs & derivatives , Ergosterol/analogs & derivatives , Fluorescent Dyes/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Cholestenes/metabolism , Ergosterol/chemistry , Ergosterol/metabolism , Fluorescent Dyes/metabolism , Lipid Bilayers/chemistry , Molecular Conformation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism
4.
J Chem Inf Model ; 52(8): 1970-83, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22830563

ABSTRACT

Density functional theory (DFT) calculations have been carried out to investigate the switching of the second-order nonlinear optical (NLO) properties of η(5)-monocyclopentadienyliron(II) and ruthenium(II) model complexes presenting 5-(3-(thiophen-2-yl)benzo[c]thiophen-1-yl)thiophene-2-carbonitrile as a ligand. The switching properties were induced by redox means. Both oxidation and reduction stimulus have been considered, and calculations have been performed both for the complexes and for the free benzo[c]thiophene derivative ligand in order to elucidate the role played by the organometallic fragment on the second-order NLO properties of these complexes. B3LYP, CAM-B3LYP, and M06 functionals were used for our calculations. The results show some important structural changes upon oxidation/reduction that are accompanied by significant differences on the corresponding second-order NLO properties. TD-DFT calculations show that these differences on the second-order NLO response upon oxidation/reduction are due to a change in the charge transfer pattern, in which the organometallic iron and ruthenium moieties play an important role. The calculated static hyperpolarizabilities were found to be strongly functional dependent. CAM-B3LYP, however, seems to predict more reliable structural and optical data as well as hyperpolarizabilities when compared to experimental data. The use of this functional predicts that the studied complexes can be viewed as acting as redox second-order NLO switches, in particular using oxidation stimulus. The ß(tot) value of one-electron oxidized species is at least ~8.3 times (for Ru complex) and ~5.5 times (for Fe complex) as large as that of its nonoxidized counterparts.

5.
Biophys Chem ; 159(2-3): 275-86, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21868145

ABSTRACT

T-20 (also known as enfuvirtide) is a fusion inhibitor peptide known to have some effectiveness in the control of progression of HIV infection by inhibiting the fusion of the HIV envelope with the target cell membrane. Recent results indicate that T-20 is able to interact with membranes in the liquid disordered state but not with membranes in an ordered state, which could be linked to its effectiveness. A detailed molecular picture of the interaction of these molecules with membranes is still lacking. To this effect, extensive molecular dynamics simulations (100 ns) were carried out to investigate the interaction between T-20 and bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and POPC/cholesterol (1:1). Membrane properties such as area/lipid, density profiles, order parameters and membrane thickness were studied. It was observed that T-20 has the ability to interact to different extents with both model membranes in this study and that peptide interaction with the bilayer surface has a local effect on membrane structure. The formation of hydrogen bonding between certain peptide residues and the POPC phosphate group was observed. However, T-20 showed a more limited extent of interaction with model membranes when compared with other, more efficient, peptides (such as T-1249). This effect is most notable in POPC/Chol membranes in which interaction is especially weak, owing to less peptide residues acting as H bond donors to POPC and virtually no H bonds being formed between T-20 and cholesterol. This lower ability to interact with membranes is probably correlated with its smaller inhibitory efficiency.


Subject(s)
HIV Envelope Protein gp41/pharmacology , HIV Fusion Inhibitors/pharmacology , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Peptide Fragments/pharmacology , Cholesterol/metabolism , Enfuvirtide , HIV/drug effects , HIV Infections/drug therapy , Humans , Phosphatidylcholines/metabolism
6.
J Phys Chem B ; 115(32): 9745-65, 2011 Aug 18.
Article in English | MEDLINE | ID: mdl-21721582

ABSTRACT

As a natural extension of a previous work, excess molar enthalpies and excess molar volumes as a function of composition in a wide range of temperatures have been obtained for binary mixtures of xenon with ethane, propane, and n-butane by Monte Carlo computer simulation. Xenon was modeled by a simple spherical Lennard-Jones potential, and the TraPPE-UA force field was used to describe the n-alkanes. One of the main goals of this study is to investigate the temperature dependence of the excess properties for mixtures of xenon and n-alkanes and, if possible, to supplement the lack of experimental data. For all three systems, the simulation results predicted excess volumes in good agreement with the experimental data. As for the excess enthalpies, in the case of (xenon + ethane), the simulation results confirm the negative experimental result and the weak temperature dependence. In the case of (xenon + propane) and (xenon + n-butane), however, the simulation predicts negative excess enthalpies, but those estimated from experimental data are positive. Both excess volumes and enthalpies display a complex dependence on temperature that in some aspects resembles that found for mixtures of n-alkanes.The structure of the liquid mixtures was also investigated by calculating radial distribution functions [g(αß)(r)] between each pair of interaction groups for all the binary systems at all temperatures. It is found that the mean distance between xenon and CH(2) groups is systematically higher than the distance between xenon and CH(3). In addition, the number of groups around xenon in the first coordination sphere was calculated and seems to be proportionally more populated by methyl groups than by methylene groups. The results seem to reflect a preferential and stronger interaction between xenon and CH(3), in agreement with previous findings.


Subject(s)
Alkanes/chemistry , Molecular Dynamics Simulation , Thermodynamics , Xenon/chemistry , Monte Carlo Method
7.
Anal Chim Acta ; 674(2): 182-9, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20678628

ABSTRACT

A multi-walled carbon nanotubes (MWCNTs) film-coated glassy carbon electrode (GCE) was used for the voltammetric determination of carbamazepine (CBZ). The results showed that this simple modified electrode exhibited excellent electrocatalytic activity towards the oxidation of CBZ. The voltammetric response of CBZ at this film-modified electrode increased significantly when compared with that at a bare glassy carbon electrode and the sensor response was reproducible. The proposed method was applied to the quantification of CBZ in wastewater samples, collected in a municipal wastewater treatment plant, and in pharmaceutical formulations. The developed methodology yields results in accord with those obtained by chromatographic techniques commonly used in the quantification of pharmaceutical compounds in real samples. Good recoveries have been obtained and the limits of detection and quantification (40 and 140 nM, respectively) are among the lowest that have been reported to date for this pharmaceutical compound using voltammetric techniques.


Subject(s)
Anticonvulsants/analysis , Carbamazepine/analysis , Electrochemistry/instrumentation , Nanotubes, Carbon/chemistry , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/analysis , Calibration , Electrodes , Limit of Detection , Oxidation-Reduction
8.
Bioresour Technol ; 101(3): 886-92, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19783427

ABSTRACT

Microcosm constructed wetlands systems established with a matrix of light expanded clay aggregates (LECA) and planted with Typha spp. were used to evaluate their ability to remove pharmaceuticals ibuprofen, carbamazepine and clofibric acid from wastewaters. Seasonal variability of these systems' performances was also evaluated. Overall, removal efficiencies of 96%, 97% and 75% for ibuprofen, carbamazepine and clofibric acid, respectively, were achieved under summer conditions after a retention time of 7 days. In winter, a maximum loss of 26% in removal efficiency was observed for clofibric acid. Removal kinetics was characterized by a fast initial step (>50% removal within 6h) mainly due to adsorption on LECA but, on a larger timescale, plants also contributed significantly to the system's performance. Despite the fact that further tests using larger-scale systems are required, this study points to the possible application of these low-cost wastewater treatment systems for dealing with pharmaceuticals contaminated wastewater.


Subject(s)
Pharmaceutical Preparations/isolation & purification , Typhaceae/metabolism , Water Purification/methods , Wetlands , Adsorption , Aluminum Silicates/chemistry , Biodegradation, Environmental , Carbamazepine/isolation & purification , Clay , Clofibric Acid/isolation & purification , Ibuprofen/isolation & purification , Industrial Waste , Kinetics , Time Factors , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification
9.
Bioresour Technol ; 100(3): 1156-61, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18835156

ABSTRACT

A study was conducted to assess Typha spp.'s ability to withstand and remove, from water, a metabolite of blood lipid regulator drugs, clofibric acid (CA). At a concentration of 20 microg L(-1), Typha had removed >50% of CA within the first 48h, reaching a maximum of 80% by the end of the assay. Experimental conditions assured that photodegradation, adsorption to vessel walls and microbial degradation did not contribute to the removal. Exposure to higher CA concentrations did not affect Typha's photosynthetic pigments but the overall increase in enzyme activity (ascorbate and guaiacol peroxidases, catalase, superoxide dismutase) indicates that both roots and leaves were affected by the xenobiotic. Eventually, Typha seemed able to cope with the CA's induced oxidative damage suggesting its ability for phytoremediation of CA contaminated waters.


Subject(s)
Clofibric Acid/pharmacology , Clofibric Acid/pharmacokinetics , Typhaceae/drug effects , Typhaceae/metabolism , Water Purification/methods , Biodegradation, Environmental , Clofibric Acid/isolation & purification , Feasibility Studies , Oxidative Stress/drug effects , Typhaceae/physiology , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/pharmacokinetics , Water Pollutants, Chemical/pharmacology
10.
Langmuir ; 23(14): 7555-61, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17559237

ABSTRACT

Adsorption isotherms and differential heats of normal pentane adsorption on microcrystalline rutile were measured at 303 K. The heat of adsorption of n-pentane on rutile at zero occupancy is 64 kJ/mol. The differential heats have three descending segments, corresponding to the adsorption of n-pentane on three types of surfaces. At low coverage (first segment), the adsorption is restricted to the rows A of the (110) faces along the 5-fold coordinatively unsaturated (cus) Ti(4+) ions with differential heat showing a linear decrease with increasing occupancy. The second segment is attributed to bonding with atoms of the rows along the remaining faces exposed, (101) and (100). The third segment is related to a multilayer adsorption. The mean molar adsorption entropy of n-pentane is ca. -25 J/mol K less than the entropy of the bulk liquid, thus revealing a hindered state of motion of the n-pentane molecules on the surface of rutile. Simulations of the adsorption of n-pentane on the three most abundant crystallographic faces of rutile were also performed. The adsorption isotherm obtained from the combination of each face's isotherm weighted by the respective abundance was found to be in a good agreement with the experimental data. A structural characterization of n-pentane near the surface was also conducted, and it was found that the substrate, especially for the (110) face, strongly perturbs the distribution of n-pentane conformations, compared to those found for the gas phase. Adsorbed molecules are predominantly oriented with their long axes and their backbone zigzag planes parallel to the surface and are also characterized by fewer gauche conformations than observed in the bulk phase.

11.
J Phys Chem B ; 111(23): 6437-43, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17516674

ABSTRACT

Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.

12.
Sci Total Environ ; 380(1-3): 237-46, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17379272

ABSTRACT

The efficiency of constructed wetlands systems in the removal of pollutants can be significantly enhanced by using a support matrix with a greater capacity to retain contaminants by sorption phenomena, ionic exchange or other physico-chemical processes. The aim of this work was to evaluate the efficiencies of 3 different materials, Light Expanded Clay Aggregates [LECA] (in two different particle sizes), Expanded Perlite and Sand, for the removal from water of one pharmaceutical compound (clofibric acid) and one pesticide (MCPA). Both belong to the class of phenoxyacetic compounds. In addition, relationships were established between the compounds' removal efficiencies and the physico-chemical properties of each material. LECA exhibited a high sorption capacity for MCPA, while the capacity for clofibric acid was more modest, but still significant. In contrast, perlite had a very limited sorption capacity while sand did not exhibit any sorption capacity for any of the compounds. LECA with smaller particle sizes showed higher efficiencies than larger grade LECA and can achieve efficiencies near 100% for the lower concentrations in the order of 1 mg l(-1). However, the use of these smaller particle media at larger scales may present problems with hydraulic conductivities. The results show that expanded clay presents important advantages in laboratory studies and could be used as a filter medium or a support matrix in constructed wetlands systems.


Subject(s)
Phenoxyacetates/metabolism , Waste Disposal, Fluid/instrumentation , Water Pollutants, Chemical/metabolism , Water Purification/methods , Wetlands , 2-Methyl-4-chlorophenoxyacetic Acid/analysis , 2-Methyl-4-chlorophenoxyacetic Acid/chemistry , 2-Methyl-4-chlorophenoxyacetic Acid/metabolism , Adsorption , Aluminum Oxide/chemistry , Aluminum Silicates/chemistry , Clay , Clofibric Acid/analysis , Clofibric Acid/chemistry , Clofibric Acid/metabolism , Filtration , Particle Size , Phenoxyacetates/analysis , Phenoxyacetates/chemistry , Silicon Dioxide/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...