Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 83(10): 3781-92, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26169268

ABSTRACT

Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4(+), but not CD8(+), T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection.


Subject(s)
Malaria Vaccines/immunology , Malaria/prevention & control , Plasmodium yoelii/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/immunology , Erythrocytes/parasitology , Female , Humans , Immunization , Malaria/immunology , Malaria/mortality , Malaria/parasitology , Malaria Vaccines/administration & dosage , Malaria Vaccines/chemistry , Malaria Vaccines/genetics , Male , Merozoites/chemistry , Merozoites/growth & development , Merozoites/immunology , Mice , Mice, Inbred C57BL , Plasmodium yoelii/chemistry , Plasmodium yoelii/genetics , Plasmodium yoelii/growth & development , Protein Structure, Tertiary , Protozoan Proteins/administration & dosage , Protozoan Proteins/genetics , Sporozoites/chemistry , Sporozoites/growth & development , Sporozoites/immunology
2.
J Infect Dis ; 209(9): 1403-7, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24415786

ABSTRACT

There is now a growing body of evidence that challenges the current view that Plasmodium vivax-infected erythrocyte (Pv-iE) are unable to sequester. Here we used ex vivo adhesion assays with Pv-iE before and after maturation to demonstrate a higher binding potential of schizonts compared to other asexual stages. These experimental results are correlated with our observations in a panel of 50 vivax malaria patients where schizonts were completely absent in 27 isolates, and few schizonts were observed in the remaining patients. These observations prompt a paradigm shift in P. vivax biology and open avenues to investigate the role of Pv-iE sequestration.


Subject(s)
Cell Adhesion/physiology , Erythrocytes/parasitology , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Plasmodium vivax/physiology , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Humans , Malaria, Vivax/drug therapy , Parasitemia/blood , Parasitemia/parasitology , Plasmodium vivax/growth & development , Primaquine/therapeutic use , Schizonts/physiology , Statistics, Nonparametric
3.
Malar J ; 10: 178, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21708032

ABSTRACT

Gestational malaria is a multi-factorial syndrome leading to poor outcomes for both the mother and foetus. Although an unusual increasing in the number of hospitalizations caused by Plasmodium vivax has been reported in Brazil, mortality is rarely observed. This is a report of a gestational malaria case that occurred in the city of Manaus (Amazonas State, Brazil) and resulted in foetal loss. The patient presented placental mixed-infection by Plasmodium vivax and Plasmodium falciparum after diagnosis by nested-PCR, however microscopic analysis failed to detect P. falciparum in the peripheral blood. Furthermore, as the patient did not receive proper treatment for P. falciparum and hospitalization occurred soon after drug treatment, it seems that P. falciparum pathology was modulated by the concurrent presence of P. vivax. Collectively, this case confirms the tropism towards the placenta by both of these species of parasites, reinforces the notion that co-existence of distinct malaria parasites interferes on diseases' outcomes, and opens discussions regarding diagnostic methods, malaria treatment during pregnancy and prenatal care for women living in unstable transmission areas of malaria, such as the Brazilian Amazon.


Subject(s)
Abortion, Septic , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Placenta/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Pregnancy Complications, Infectious/diagnosis , Brazil , Female , Humans , Malaria, Falciparum/complications , Malaria, Vivax/complications , Microscopy , Polymerase Chain Reaction , Pregnancy , Young Adult
4.
J Infect Dis ; 202(4): 638-47, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20617923

ABSTRACT

BACKGROUND: Plasmodium falciparum and Plasmodium vivax are responsible for most of the global burden of malaria. Although the accentuated pathogenicity of P. falciparum occurs because of sequestration of the mature erythrocytic forms in the microvasculature, this phenomenon has not yet been noted in P. vivax. The increasing number of severe manifestations of P. vivax infections, similar to those observed for severe falciparum malaria, suggests that key pathogenic mechanisms (eg, cytoadherence) might be shared by the 2 parasites. METHODS: Mature P. vivax-infected erythrocytes (Pv-iEs) were isolated from blood samples collected from 34 infected patients. Pv-iEs enriched on Percoll gradients were used in cytoadhesion assays with human lung endothelial cells, Saimiri brain endothelial cells, and placental cryosections. RESULTS: Pv-iEs were able to cytoadhere under static and flow conditions to cells expressing endothelial receptors known to mediate the cytoadhesion of P. falciparum. Although Pv-iE cytoadhesion levels were 10-fold lower than those observed for P. falciparum-infected erythrocytes, the strength of the interaction was similar. Cytoadhesion of Pv-iEs was in part mediated by VIR proteins, encoded by P. vivax variant genes (vir), given that specific antisera inhibited the Pv-iE-endothelial cell interaction. CONCLUSIONS: These observations prompt a modification of the current paradigms of the pathogenesis of malaria and clear the way to investigate the pathophysiology of P. vivax infections.


Subject(s)
Erythrocytes/parasitology , Malaria, Vivax/pathology , Plasmodium vivax/pathogenicity , Animals , Cell Adhesion , Endothelial Cells/pathology , Erythrocytes/pathology , Female , Humans , Placenta/pathology , Pregnancy , Saimiri
5.
Gene ; 453(1-2): 37-44, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20079817

ABSTRACT

The Plasmodium falciparum var gene family encodes large variant antigens, which are important virulence factors, and also targets of the humoral host response. The frequently observed mild outcomes of falciparum malaria in many places of the Amazon area prompted us to ask whether a globally restricted variant (var) gene repertoire is present in currently circulating and older isolates of this area. By exhaustive analysis of var gene tags from 89 isolates and clones taken during many years from all over the Brazilian Amazon, we estimate that there are probably no more than 350-430 distinct sequence types, less than for any similar sized area studied so far. Detailed analysis of the var tags from genetically distinct clones obtained from single isolates revealed restricted and redundant repertoires suggesting either a low incidence of infective bites or restricted variant gene diversity in inoculated parasites. Additionally, we found a structuring of var gene repertoires observed as a higher pairwise typing sharing in isolates from the same microregion compared to isolates from different regions. Fine analysis of translated var tags revealed that certain Distinct Sequence Identifiers (DSIDs) were differently represented in Brazilian/South American isolates when compared to datasets from other continents. By global alignment of worldwide var DBLalpha sequences and sorting in groups with more than 76% identity, 125 clusters were formed and more than half of all genes were found in nine clusters with 50 or more sequences. While Brazilian/South American sequences were represented only in 64 groups, African sequences were found in the majority of clusters. DSID type 1 related sequences accumulated almost completely in one single cluster, indicating that limited recombination occurs in these specific var gene types. These data demonstrate the so far highest pairwise type sharing values for the var gene family in isolates from all over an entire subcontinent. The apparent lack of specific sequences types suggests that the P. falciparum transmission dynamics in the whole Amazon are probably different from any other endemic region studied and possibly interfere with the parasite's ability to efficiently diversify its variant gene repertoires.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Brazil , DNA, Protozoan/genetics , Gene Expression Regulation , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification , Protozoan Proteins/immunology , Sequence Analysis, DNA
6.
Vaccine ; 26(48): 6132-42, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18804504

ABSTRACT

The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FliC), a Toll-like receptor 5 (TLR5) agonist. FliC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P. vivax MSP1(19) in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSP1(19)-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malarial antigens and the innate immunity agonist FliC. It contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants.


Subject(s)
Adjuvants, Immunologic , Flagellin/pharmacology , Malaria Vaccines/immunology , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Salmonella typhimurium/metabolism , Toll-Like Receptor 5/agonists , Administration, Intranasal , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Chemistry, Pharmaceutical , Female , Flagellin/isolation & purification , Fluorescent Antibody Technique, Indirect , Immunization Schedule , Injections, Subcutaneous , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Merozoite Surface Protein 1/genetics , Mice , Mice, Inbred C57BL , Plasmodium vivax/genetics , Th1 Cells/immunology , Th2 Cells/immunology , Vaccines, Synthetic/immunology
7.
PLoS One ; 3(9): e3126, 2008 Sep 04.
Article in English | MEDLINE | ID: mdl-18769544

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is a syndrome characterized by neurological signs, seizures and coma. Despite the fact that CM presents similarities with cerebral stroke, few studies have focused on new supportive therapies for the disease. Hyperbaric oxygen (HBO) therapy has been successfully used in patients with numerous brain disorders such as stroke, migraine and atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were exposed to daily doses of HBO (100% O(2), 3.0 ATA, 1-2 h per day) in conditions well-tolerated by humans and animals, before or after parasite establishment. Cumulative survival analyses demonstrated that HBO therapy protected 50% of PbA-infected mice and delayed CM-specific neurological signs when administrated after patent parasitemia. Pressurized oxygen therapy reduced peripheral parasitemia, expression of TNF-alpha, IFN-gamma and IL-10 mRNA levels and percentage of gammadelta and alphabeta CD4(+) and CD8(+) T lymphocytes sequestered in mice brains, thus resulting in a reduction of blood-brain barrier (BBB) dysfunction and hypothermia. CONCLUSIONS/SIGNIFICANCE: The data presented here is the first indication that HBO treatment could be used as supportive therapy, perhaps in association with neuroprotective drugs, to prevent CM clinical outcomes, including death.


Subject(s)
Gene Expression Regulation , Hyperbaric Oxygenation , Malaria, Cerebral/therapy , Animals , Brain/metabolism , Disease Models, Animal , Malaria, Cerebral/mortality , Malaria, Cerebral/parasitology , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Plasmodium berghei/metabolism , T-Lymphocytes/metabolism , Temperature , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...