Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Ophthalmol ; 97(5): e719-e728, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30839157

ABSTRACT

PURPOSE: A retrospective pilot study is conducted to demonstrate the utility of a novel support vector machine learning (SVML) algorithm in a small three-dimensional (3D) sample yielding sparse optical coherence tomography (spOCT) data for the automatic monitoring of neovascular (wet) age-related macular degeneration (wAMD). METHODS: From the anti-vascular endothelial growth factor injection database, 588 consecutive pairs of OCT volumes (57.624 B-scans) were selected in 70 randomly chosen wAMD patients treated with ranibizumab. The SVML algorithm was applied to 183 OCT volume pairs (17.934 B-scans) in 30 patients. Four independent, diagnosis-blinded retina specialists indicated whether wAMD activity was present between 100 pairs of consecutive OCT volumes (9800 B-scans) in the remaining 40 patients for comparison with the SVML algorithm and a non-complex baseline algorithm using only retinal thickness. The SVML algorithm was assessed using inter-observer variability and receiver operating characteristic (ROC) analyses. RESULTS: The retina specialists showed an average Cohen's κ of 0.57 ± 0.13 (minimum: 0.41, maximum: 0.83). The average κ between the proposed algorithm and the retina specialists was 0.62 ± 0.05 and 0.43 ± 0.14 between the baseline algorithm and the retina specialists. Using each of the four retina specialists as the reference, the proposed method showed a superior area under the ROC curve of 0.91 ± 0.03 compared to the ROC 0.81 ± 0.05 shown by the baseline algorithm. CONCLUSION: The SVML algorithm was as effective as the retina specialists were in detecting activity in wAMD. Support vector machine learning (SVML) may be a useful monitoring tool in wAMD suited for small samples that yield sparse OCT data possibly derived from self-measuring OCT-robots.


Subject(s)
Algorithms , Macula Lutea/diagnostic imaging , Support Vector Machine , Tomography, Optical Coherence/methods , Wet Macular Degeneration/diagnosis , Aged , Aged, 80 and over , Disease Progression , Feasibility Studies , Female , Follow-Up Studies , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Pilot Projects , Prognosis , ROC Curve , Retrospective Studies , Time Factors
2.
J Vis Exp ; (95): 52042, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25650764

ABSTRACT

We report here a robust and efficient protocol for the expression of fluorescent proteins after mRNA injection into unfertilized oocytes of the cephalochordate amphioxus, Branchiostoma lanceolatum. We use constructs for membrane and nuclear targeted mCherry and eGFP that have been modified to accommodate amphioxus codon usage and Kozak consensus sequences. We describe the type of injection needles to be used, the immobilization protocol for the unfertilized oocytes, and the overall injection set-up. This technique generates fluorescently labeled embryos, in which the dynamics of cell behaviors during early development can be analyzed using the latest in vivo imaging strategies. The development of a microinjection technique in this amphioxus species will allow live imaging analyses of cell behaviors in the embryo as well as gene-specific manipulations, including gene overexpression and knockdown. Altogether, this protocol will further consolidate the basal chordate amphioxus as an animal model for addressing questions related to the mechanisms of embryonic development and, more importantly, to their evolution.


Subject(s)
Green Fluorescent Proteins/biosynthesis , Lancelets/metabolism , Luminescent Proteins/biosynthesis , Microinjections/methods , Oocytes/metabolism , RNA, Messenger/administration & dosage , RNA, Messenger/metabolism , Animals , Female , Green Fluorescent Proteins/genetics , Luminescent Proteins/genetics , Male , RNA, Messenger/genetics , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL