Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clim Dyn ; 62(1): 589-607, 2024.
Article in English | MEDLINE | ID: mdl-38274892

ABSTRACT

Atmospheric rivers (ARs) reach High Mountain Asia (HMA) about 10 days per month during the winter and spring, resulting in about 20 mm day-1 of precipitation. However, a few events may exceed 100 mm day-1, providing most of the total winter precipitation and increasing the risk of precipitation-triggered landslides and flooding, particularly when the height of the height of the 0 ∘C isotherm, or freezing level is above-average. This study shows that from 1979 to 2015, integrated water vapor transport (IVT) during ARs that reach Western HMA has increased 16% while the freezing level has increased up to 35 m. HMA ARs that have an above-average freezing level result in 10-40% less frozen precipitation compared to ARs with a below-average freezing level. To evaluate the importance of these trends in the characteristics of ARs, we investigate mesoscale processes leading to orographic precipitation using Advanced Weather Research and Forecasting (ARW-WRF) simulations at 6.7 km spatial resolution. We contrast two above- and below- average freezing level AR events with otherwise broadly similar characteristics and show that with a 50-600 m increase in freezing level, the above-average AR resulted in 10-70% less frozen precipitation than the below-average event. This study contributes to a better understanding of climate change-related impacts within HMA's hydrological cycle and the associated hazards to vulnerable communities living in the region.

2.
Clim Dyn ; 58(9-10): 2309-2331, 2022.
Article in English | MEDLINE | ID: mdl-35535316

ABSTRACT

Atmospheric rivers (ARs) that reach the complex terrain of High Mountain Asia (HMA) cause significant hydrological impacts for millions of people. While ARs are often associated with precipitation extremes and can cause floods and debris flows affecting populated communities, little is known about ARs that reach as far inland as HMA. This paper characterizes AR types and investigates dynamical mechanisms associated with the development of ARs that typically affect HMA. Combined empirical orthogonal function (cEOF) analysis using integrated water vapor transport (IVT) is applied to days where an AR reaches HMA. K-means cluster analysis applied to the first two principal components uncovered three subtypes of AR events with distinct synoptic characteristics during winter and spring months. The first subtype increases precipitation and IVT in Western HMA and is associated with a zonally oriented wave train propagating within the westerly jet waveguide. The second subtype is associated with enhanced southwesterly IVT, anomalous upper-level cyclonic circulation centered on 45 ∘ E, and precipitation in Northwestern HMA. The third subtype shows anomalous precipitation in Eastern HMA and southwesterly IVT across the Bay of Bengal. Interannual variations in the frequency of HMA ARs and relationships with various teleconnection patterns show that western HMA AR subtypes are sensitive to well-known remote large-scale climate factors, such as the El Niño Southern Oscillation, Arctic Oscillation, and the Siberian High. These results provide synoptic characterization of the three types of ARs that reach HMA and reveal the previously unexplored significance of their contribution to winter and spring precipitation. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-021-06008-z.

3.
PNAS Nexus ; 1(3): pgac115, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36741468

ABSTRACT

Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.

4.
Sensors (Basel) ; 19(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627275

ABSTRACT

Essential for directing conservation resources is to identify threatened vertebrate regions and diagnose the underlying causalities. Through relating vertebrates and threatened vertebrates to the rainfall-runoff chain, to the food chain, and to the human impact of urbanization, the following relationships are noticed: (i) The Earth's vertebrates generally show increasing abundance and decreasing threatened species indicator (threatened species number/species abundance) for a higher Normalized Difference Vegetation Index (NDVI) or larger city-size. (ii) Regional vertebrates reveal a notable 'U-shape profile' ('step-like jump') of threatened species indicator occurs in the moderate (high) NDVI regions in China (America). (iii) Positive/green city states emerge in China and are characterized by the lowest threatened species indicators in areas of low to moderate greenness, where the greenness trend of change during the last 30 years is about three times higher in the urbanized areas than over land. (iv) Negative/brown city states emerge in America revealing high threatened species indicators for greenness exceeding NDVI > 0.2, where similar greenness trends are of both urbanized and land areas. The occurrence of green and brown city states suggests a biodiversity change pattern characterized by the threatened species indicator declining from city regimes with high to those with low indicator values for increasing ratio of the city-over-land NDVI trends.


Subject(s)
Biodiversity , Ecosystem , Environmental Monitoring , Vertebrates/growth & development , Animals , China , Cities , Climate , Humans , Temperature , United States , Urbanization
SELECTION OF CITATIONS
SEARCH DETAIL
...