Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(6)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37376150

ABSTRACT

Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities. Therefore, this study reports for the first time the design, synthesis, and extensive characterization of innovative colloidal nanostructures made of cobalt-doped iron oxide nanoparticles chemically stabilized by a carboxymethylcellulose capping ligand (i.e., Co-MION), creating a peroxidase-like (POD) nanozyme for biocatalytically killing GBM cancer cells. These nanoconjugates were produced using a strictly green aqueous process under mild conditions to create non-toxic bioengineered nanotherapeutics against GBM cells. The nanozyme (Co-MION) showed a magnetite inorganic crystalline core with a uniform spherical morphology (diameter, 2R = 6-7 nm) stabilized by the CMC biopolymer, producing a hydrodynamic diameter (HD) of 41-52 nm and a negatively charged surface (ZP~-50 mV). Thus, we created supramolecular water-dispersible colloidal nanostructures composed of an inorganic core (Cox-MION) and a surrounding biopolymer shell (CMC). The nanozymes confirmed the cytotoxicity evaluated by an MTT bioassay using a 2D culture in vitro of U87 brain cancer cells, which was concentration-dependent and boosted by increasing the cobalt-doping content in the nanosystems. Additionally, the results confirmed that the lethality of U87 brain cancer cells was predominantly caused by the production of toxic cell-damaging reactive oxygen species (ROS) through the in situ generation of hydroxyl radicals (·OH) by the peroxidase-like activity displayed by nanozymes. Thus, the nanozymes induced apoptosis (i.e., programmed cell death) and ferroptosis (i.e., lipid peroxidation) pathways by intracellular biocatalytic enzyme-like activity. More importantly, based on the 3D spheroids model, these nanozymes inhibited tumor growth and remarkably reduced the malignant tumor volume after the nanotherapeutic treatment (ΔV~40%). The kinetics of the anticancer activity of these novel nanotherapeutic agents decreased with the time of incubation of the GBM 3D models, indicating a similar trend commonly observed in tumor microenvironments (TMEs). Furthermore, the results demonstrated that the 2D in vitro model overestimated the relative efficiency of the anticancer agents (i.e., nanozymes and the DOX drug) compared to the 3D spheroid models. These findings are notable as they evidenced that the 3D spheroid model resembles more precisely the TME of "real" brain cancer tumors in patients than 2D cell cultures. Thus, based on our groundwork, 3D tumor spheroid models might be able to offer transitional systems between conventional 2D cell cultures and complex biological in vivo models for evaluating anticancer agents more precisely. These nanotherapeutics offer a wide avenue of opportunities to develop innovative nanomedicines for fighting against cancerous tumors and reducing the frequency of severe side effects in conventionally applied chemotherapy-based treatments.

2.
Polymers (Basel) ; 15(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38231902

ABSTRACT

Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.

3.
Pharmaceutics ; 14(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297660

ABSTRACT

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

4.
Int J Biol Macromol ; 210: 530-544, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35513094

ABSTRACT

Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Quantum Dots , Animals , Antineoplastic Agents/chemistry , Brain Neoplasms/drug therapy , Carboxymethylcellulose Sodium/chemistry , Cell Line, Tumor , Cysteine , Doxorubicin/chemistry , Glioblastoma/drug therapy , Nanoconjugates/therapeutic use , Polymers/therapeutic use , Quantum Dots/chemistry , Theranostic Nanomedicine , Tumor Microenvironment
5.
Nanotheranostics ; 5(2): 213-239, 2021.
Article in English | MEDLINE | ID: mdl-33614399

ABSTRACT

Overview: Malignant brain tumors remain one of the greatest challenges faced by health professionals and scientists among the utmost lethal forms of cancer. Nanotheranostics can play a pivotal role in developing revolutionary nanoarchitectures with multifunctional and multimodal capabilities to fight cancer. Mitochondria are vital organelles to eukaryotic cells, which have been recognized as a significant target in cancer therapy where, by damaging the mitochondria, it will cause irreparable cell death or apoptosis. Methods: We designed and produced novel hybrid nanostructures comprising a fluorescent semiconductor core (AgInS2, AIS) and cysteine-modified carboxymethylcellulose (termed thiomer, CMC_Cys) conjugated with mitochondria-targeting peptides (KLA) forming a macromolecular shell for combining bioimaging and for inducing brain cancer cell (U-87 MG) death. Results: The optical and physicochemical properties of the nanoconjugates demonstrated suitability as photoluminescent nanostructures for cell bioimaging and intracellular tracking. Additionally, the results proved a remarkable killing activity towards glioblastoma cells of cysteine-bearing CMC conjugates coupled with KLA peptides through the half-maximal effective concentration values, approximately 70-fold higher compared to the conjugate analogs without Cys residues. Moreover, these thiomer-based pro-apoptotic drug nanoconjugates displayed higher lethality against U-87 MG cancer cells than doxorubicin, a model drug in chemotherapy, although extremely toxic. Remarkably, these peptidomimetic nanohybrids demonstrated a relative "protective effect" regarding healthy cells while maintaining high killing activity towards malignant brain cells. Conclusion: These findings pave the way for developing hybrid nanoarchitectures applied as targeted multifunctional platforms for simultaneous imaging and therapy against cancer while minimizing the high systemic toxicity and side-effects of conventional drugs in anticancer chemotherapy.


Subject(s)
Apoptosis/drug effects , Brain Neoplasms/pathology , Fluorescent Dyes/chemistry , Mitochondria/drug effects , Nanotechnology , Peptidomimetics , Precision Medicine/methods , Cell Line, Tumor , Humans
6.
Nanoscale Adv ; 3(4): 1029-1046, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-36133299

ABSTRACT

Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.

7.
Carbohydr Polym ; 247: 116703, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32829831

ABSTRACT

Although the field of oncology nanomedicine has shown indisputable progress in recent years, cancer remains one of the most lethal diseases, where the early diagnosis plays a pivotal role in the patient's prognosis and therapy. Herein, we report for the first time, the synthesis of biocompatible nanostructures composed of Cu-In-S and Cu-In-S/ZnS nanoparticles functionalized with carboxymethylcellulose biopolymer produced by a green aqueous process. These inorganic-organic colloidal nanohybrids developed supramolecular architectures stabilized by chemical functional groups of the polysaccharide shell with the fluorescent semiconductor nanocrystal core, which were extensively characterized by several morphological and spectroscopical techniques. Moreover, these nanoconjugates were covalently bonded with folic acid via amide bonds and electrostatically conjugated with the anticancer drug, producing functionalized supramolecular nanostructures. They demonstrated nanotheranostics properties for bioimaging and drug delivery vectorization effective for killing breast cancer cells in vitro. These hybrids offer a new nanoplatform using fluorescent polysaccharide-drug conjugates for cancer theranostics applications.


Subject(s)
Antineoplastic Agents/pharmacology , Carboxymethylcellulose Sodium/chemistry , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Theranostic Nanomedicine , Triple Negative Breast Neoplasms/drug therapy , Zinc Compounds/chemistry , Antineoplastic Agents/chemistry , Copper/chemistry , Female , Humans , Indium/chemistry , Sulfur/chemistry , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured
8.
Mater Lett ; 277: 128279, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32834256

ABSTRACT

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus via covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

9.
J Mater Chem B ; 8(32): 7166-7188, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32614035

ABSTRACT

Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Fluorescent Dyes/chemistry , Magnetite Nanoparticles/chemistry , Nanocapsules/chemistry , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Combined Modality Therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/chemistry , Folic Acid/metabolism , Humans , Hyperthermia, Induced/adverse effects , Magnetic Fields , Magnetite Nanoparticles/therapeutic use , Molecular Targeted Therapy , Optical Imaging , Prospective Studies , Reactive Oxygen Species/metabolism , Theranostic Nanomedicine
10.
Colloids Surf B Biointerfaces ; 184: 110507, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31542643

ABSTRACT

Glioblastoma (GBM) is the utmost aggressive and lethal primary brain cancer, which has a poor prognosis and remains virtually incurable. Nanomedicine with emerging disruptive nanotechnology alternatives, including designed supramolecular nanohybrids has excellent potential as multimodal tools against cancer by combining nanomaterials, biomacromolecules, and drugs. Thus, we developed and constructed for the first time quantum dot-biopolymer-drug nanohybrids based on host-guest chemistry for simultaneous bioimaging, targeting, and anti-cancer drug delivery against GBM cells in vitro. ZnS fluorescent quantum dots (ZnS-QDs) were produced using chemically modified polysaccharide, carboxymethylcellulose (CMC), as water-soluble capping ligand and biofunctional layer via a facile one-step eco-friendly aqueous colloidal process at room temperature and physiological pH. These hybrid inorganic-organic nanocolloids (ZnS@CMC) were electrostatically conjugated with doxorubicin (DOX) anti-cancer drug forming innovative supramolecular complexes (ZnS@CMC-DOX) for amalgamating bioimaging and killing cancer cells. These nanoconjugates were characterized regarding their optical and physicochemical properties combined with morphological and structural features. The cytocompatibility was evaluated by MTT assay using healthy and GBM cells. The results showed that ultra-small ZnS-QDs were expertly produced uniform nanocolloids (average size = 3.6 nm). They demonstrated photoluminescence emission within the visible range of spectra. The cell viability results in vitro showed no cytotoxicity of ZnS@CMC nanohybrids towards both cell types. In summary, the novelty of this research relies on using a nanotheranostic strategy for developing ZnS@CMC-DOX nanohybrids with supramolecular vesicle-like structures. They behaved simultaneously as active fluorescent nanoprobes and nanocarriers with modulated drug release for bioimaging and killing malignant glioma cells proving the high potential for applications in cancer nanomedicine.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Biopolymers/chemistry , Brain Neoplasms/drug therapy , Doxorubicin/pharmacology , Glioblastoma/drug therapy , Optical Imaging , Quantum Dots/chemistry , Antibiotics, Antineoplastic/chemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Glioblastoma/metabolism , Glioblastoma/pathology , HEK293 Cells , Humans , Macromolecular Substances/chemistry , Nanoparticles/chemistry , Particle Size , Surface Properties
11.
Int J Biol Macromol ; 132: 811-821, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30946907

ABSTRACT

The present work describes in vitro and in vivo behaviors of thermosensitive composite hydrogels based on polymers/bioactive glass nanoparticles. Assays in SBF (simulated body fluid) solution showed that loss of hydrogel mass in vitro was decreased by 4.3% when bioactive glass nanoparticles (nBG) were incorporated, and confirmed the bioactivity of nBG containing hydrogels. In vitro assays demonstrated the cytocompatibility of the hydrogels with encapsulated rat bone marrow mesenchymal stem cells (BMSC). Crystal violet assays showed a 27% increase in cell viability when these cells were seeded in hydrogels containing nBG. In vivo biocompatibility was examined by injecting hydrogels into the dorsum of Swiss rats. The results indicated that the prepared hydrogels were nontoxic upon subcutaneous injection, and could be candidates for a safe in situ gel-forming system. Injection of the hydrogels into a rat tibial defect allowed preliminary evaluation of the hydrogels' regenerative potential. Micro Computed Tomography analysis suggested that more new tissue was formed in the defects treated with the hydrogels. Taken together, our data suggest that the developed injectable composite hydrogels possess properties which make them suitable candidates for use as temporary injectable matrices for bone regeneration.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Chitosan/chemistry , Gelatin/chemistry , Glass/chemistry , Hydrogels/chemistry , Nanocomposites/chemistry , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cell Survival/drug effects , Female , Injections , Materials Testing , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Rats , Rats, Wistar , Tibia/cytology , Tibia/diagnostic imaging , Tibia/drug effects , Tibia/physiology , Tissue Engineering , Tissue Scaffolds/chemistry , X-Ray Microtomography
12.
Int J Biol Macromol ; 133: 739-753, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31022489

ABSTRACT

Although noticeable scientific and technological progress, cancer remains one of the deadliest diseases worldwide and advancements in diagnosis, targeting and treating cancer cells are an urgency. In this study, we designed and synthesized novel amino acid and polypeptide modified polysaccharide derivatives associated with fluorescent nanomaterials for producing nanohybrids with functionalities for bioimaging and cell penetrating. Carboxymethylcellulose (CMCel) was chemically biofunctionalized with L-cysteine (CMCelCys) or poly-L-arginine (CMCelPolyArg) and the conjugates were used as capping ligands for synthesizing fluorescent AgInS2 quantum dots (AIS-QDs) in aqueous colloidal media. These systems were characterized by FTIR, NMR, UV-Vis, TEM-EDX, DLS, zeta potential and PL for assessing physicochemical properties, structural and morphological features. Mitochondrial activity assay (MTT) was used for evaluating preliminary cytotoxicity and confocal laser microscopy for investigating cellular uptake of the nanohybrids. Results confirmed the biofunctionalization of CMCel through amide bonds formation and indicated the formation of water-dispersed fluorescent nanocolloids with core-shell nanostructures composed by semiconductor cores stabilized by shell layers of CMCelCys or CMCelPolyArg. The nanohybrids' optical properties were affected by the grafting of functionalities into CMCel. All nanohybrids demonstrated no in vitro cytotoxicity based on MTT results and were successfully internalized by glioma cells, behaving as fluorescent nanoprobes for bioimaging and biolabeling.


Subject(s)
Arginine/chemistry , Brain Neoplasms/pathology , Carboxymethylcellulose Sodium/chemistry , Cysteine/chemistry , Microscopy, Confocal/methods , Nanocomposites/chemistry , Quantum Dots/chemistry , Biological Transport , Cell Line, Tumor , Cell Survival , Chemical Phenomena , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans
13.
Int J Biol Macromol ; 132: 677-691, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30951776

ABSTRACT

Novel core-shell superparamagnetic nanofluids composed of magnetic iron oxide (Fe3O4, MION) and cobalt-doped (CoxFe3-xO4, Co-MION) nanoparticles functionalized with carboxymethyl cellulose (CMC) ligands were designed and produced via green colloidal aqueous process. The effect of the degree of substitution (DS = 0.7 and 1.2) and molecular mass (Mw) of CMC and cobalt doping concentration on the physicochemical and magnetic properties of these nanoconjugates were comprehensively investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, transmission electron microscopy (TEM) with selected area electron diffraction, X-ray fluorescence, dynamic light scattering (DLS), zeta potential (ZP) analysis, vibrating sample magnetometry (VSM) and electron paramagnetic resonance spectroscopy (EPR). The results demonstrated the effect of concentration of carboxylate groups and Mw of CMC on the hydrodynamic dimension, zeta potential, and generated heat by magnetic hyperthermia of MION nanoconjugates. Co-doping of MION showed significant alteration of the electrostatic balance of charges of the nanoconjugates interpreted as effect of surface interactions. Moreover, the VSM and EPR results proved the superparamagnetic properties of these nanocolloids, which were affected by the presence of CMC and Co-doping of iron oxide nanoparticles. These magnetic nanohybrids behaved as nanoheaters for killing brain cancer cells in vitro with prospective future applications in oncology and nanomedicine.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Carboxymethylcellulose Sodium/chemical synthesis , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Magnetic Phenomena , Nanotechnology
14.
Biomater Sci ; 7(5): 2102-2122, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30869664

ABSTRACT

Glioblastoma is the most aggressive primary brain cancer, which has no cure yet. Emerging nanotheranostic alternatives such as magnetic iron oxide nanoparticles (MIONs) have great potential as multimodal cancer therapy mediators. They can act as nanocarriers of anticancer drugs and generate localized heat when exposed to an alternating magnetic field (AMF), resulting in combined effects of chemotherapy and magnetic hyperthermia therapy. Thus, we designed and synthesized novel MIONs directly through a co-precipitation method by a single step one-pot aqueous green process using carboxymethylcellulose (CMC) as a multifunctional, biocompatible and water-soluble biopolymer ligand (iron oxide nanoparticle-CMC, MION@CMC). They were bioconjugated via amide bonds with doxorubicin (DOX, an anticancer drug) forming nanohybrids (MION@CMC-DOX). The CMC, MION@CMC and MION@CMC-DOX nanoconjugates were comprehensively characterized by 1HNMR, FTIR, TEM/SAED/EDX, UV-visible, XRD, zeta potential (ZP) and DLS analyses. Moreover, cytotoxicity and cell killing activities of these nanoconjugates were assessed by in vitro biological assays. The nanoconjugates were incubated with glioma cells (U87), a magnetic hyperthermia (MHT) assay was performed for evaluating the activity against brain cancer cells and confocal laser scanning laser microscopy was used for bioimaging their cellular uptake pathways. The results showed that fairly monodisperse and water-soluble ultra-small iron oxide nanoparticles (Fe3O4) were synthesized (core size = 7 ± 2 nm) and stabilized by CMC producing negatively charged nanocolloids (-38 ± 3 mV, MION@CMC; hydrodynamic radius, HD = 38 ± 2 nm). The results confirmed the conjugation of MION@CMC with DOX by amide bonds, leading to the development of magnetopolymersome nanostructures (MION@CMC-DOX). The cell viability bioassays evidenced low toxicity of MION@CMC compared to the severe cytotoxicity of MION@CMC-DOX nanosystems mainly caused by the release of DOX. Under an alternating magnetic field, MION@CMC and MION@CMC-DOX systems demonstrated activity for killing U87 cancer cells due to the heat generated by hyperthermia. In addition, the MION@CMC-DOX bioconjugates showed significantly higher cell killing response when exposed to an AMF due to the combined chemotherapy effect of DOX release inside the cancer cells triggering apoptotic pathways.


Subject(s)
Antineoplastic Agents/chemistry , Brain Neoplasms/pathology , Carboxymethylcellulose Sodium/chemistry , Doxorubicin/chemistry , Hyperthermia, Induced , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Transport , Brain Neoplasms/drug therapy , Chemical Phenomena , Doxorubicin/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Ferrosoferric Oxide/chemistry , HEK293 Cells , Humans , Models, Molecular , Molecular Conformation , Nanoparticles/chemistry
15.
ACS Omega ; 3(11): 15679-15691, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30556011

ABSTRACT

Many human diseases, including metabolic, immune, and central nervous system disorders, as well as several types of cancers, are the consequence of an important alteration in lipid-related metabolic biomolecules. Although recognized that one of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism, the multiple complex signaling pathways are poorly understood yet. Thus, in this research, novel nanoconjugates made of ZnS quantum dots (QDs) were directly synthesized in aqueous media using phosphoethanolamine (PEA) as the capping ligand, which is an important biomolecule naturally present in cells for de novo biosynthesis of fatty acids and phospholipids involved in the cell structure (e.g., membrane), differentiation, and cancer growth. These QD-PEA bio-nanoconjugates were characterized by spectroscopical and morphological techniques. The results demonstrated that fluorescent ZnS nanocrystalline QDs were produced with uniform spherical morphology and estimated sizes of 3.3 ± 0.6 nm. These nanoconjugates indicated core-shell colloidal nanostructures (ZnS QD-PEA) with the hydrodynamic diameter (H D) of 26.0 ± 3.5 nm and ζ-potential centered at -30.0 ± 4.5 mV. The cell viability response using mitochondrial activity assay in vitroconfirmed no cytotoxicity at several concentrations of PEA (biomolecule) and the ZnS-PEA nanoconjugates. Moreover, these nanoconjugates effectively behaved as fluorescent nanomarkers for tracking the endocytic pathways of cancer cells using confocal laser scanning microscopy bioimaging. Hence, these results proved that biofunctionalized ZnS-PEA nanoprobes offer prospective tools for cellular bioimaging with encouraging forecast for future applications as active fluorescent biomarker conjugates in metabolic-related cancer research.

16.
Bioconjug Chem ; 29(6): 1973-2000, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29790738

ABSTRACT

Polymer-drug conjugation is an attractive approach for target delivering insoluble and highly toxic drugs to tumor sites to overcome the side-effects caused by cancer chemotherapy. In this study we designed and synthesized novel polymer-drug-peptide conjugates for improved specificity on targeting cancer cells. Chemically modified polysaccharide, carboxymethylcellulose (CMC), was conjugated with doxorubicin (DOX) anticancer drug by amide bonds and dually biofunctionalized with integrin-target receptor tripeptide (RGD) and l-arginine (R) as cell-penetrating amino acid for synergistic targeting and enhancing internalization by cancer cells. These bioconjugates were tested as prodrugs against bone, breast, and brain cancer cell lines (SAOS, MCF7, and U87) and a normal cell line (HEK 293T, reference). The physicochemical characterization showed the formation of amide bonds between carboxylates (-RCOO-) from CMC biopolymer and amino groups (-NH2) from DOX and peptides (RGD or R). Moreover, these polymer-drug-peptide bioconjugates formed nanoparticulate colloidal structures and behaved as "smart" drug delivery systems (DDS) promoting remarkable reduction of the cytotoxicity toward normal cells (HEK 293T) while retaining high killing activity against cancer cells. Based on cell viability bioassays, DNA-staining, and confocal laser microscopy, this effect was assigned to the association of physicochemical aspects with the difference of the endocytic pathways and the drug release rates in live cells caused by the biofunctionalization of the macromolecule-drug systems with RGD and l-arginine. In addition, chick chorioallantoic membrane (CAM) assay was performed as an in vivo xenograft model test, which endorsed the in vitro results of anticancer activities of these polymer-drug systems. Thus, prodrug nanocarriers based on CMC-DOX-peptide bioconjugates were developed for simultaneously integrin-targeting and high killing efficacy against cancer cells, while preserving healthy cells with promising perspectives in cancer chemotherapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Arginine/metabolism , Carboxymethylcellulose Sodium/metabolism , Doxorubicin/administration & dosage , Drug Carriers/metabolism , Integrins/metabolism , Oligopeptides/metabolism , Animals , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Arginine/analogs & derivatives , Carboxymethylcellulose Sodium/analogs & derivatives , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Chickens , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , HEK293 Cells , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Oligopeptides/chemistry
17.
Carbohydr Polym ; 195: 401-412, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29804993

ABSTRACT

Melanoma is the most aggressive type of skin cancer with high rates of mortality. Despite encouraging advances demonstrated by anticancer drug carriers in recent years, developing ideal drug delivery systems to target tumor microenvironment by overcoming physiological barriers and chemotherapy side effects still remain intimidating challenges. Herein, we designed and developed a novel carbohydrate-based prodrug composed of carboxymethylcellulose (CMC) polymer bioconjugated with anticancer drug doxorubicin hydrochloride (DOX) by covalent amide bonds and crosslinked with citric acid for producing advanced hydrogels. The results demonstrated the effect of CMC hydrogel network structure with distinct degree of substitution of carboxymethyl groups of the cellulose backbone regarding to the process of bioconjugation and on tailoring the DOX release kinetics in vitro and the cytotoxicity towards melanoma cancer cells in vitro. To this end, an innovative platform was developed based on polysaccharide-drug hydrogels offering promising perspectives for skin disease applications associated with topical chemotherapy of melanoma.


Subject(s)
Antineoplastic Agents/chemistry , Carboxymethylcellulose Sodium/chemistry , Doxorubicin/chemistry , Hydrogels/chemistry , Melanoma/drug therapy , Prodrugs/chemistry , Skin Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Citric Acid/chemistry , Cross-Linking Reagents/chemistry , Doxorubicin/administration & dosage , Drug Liberation , HEK293 Cells , Humans , Hydrogels/chemical synthesis , Prodrugs/administration & dosage
18.
Int J Biol Macromol ; 106: 1218-1234, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28851645

ABSTRACT

This study focused on the synthesis and comprehensive characterization of environmentally friendly hydrogel membranes based on carboxymethyl cellulose (CMC) for wound dressing and skin repair substitutes. These new CMC hydrogels were prepared with two degrees of functionalization (DS=0.77 and 1.22) and chemically crosslinked with citric acid (CA) for tuning their properties. Additionally, CMC-based hybrids were prepared by blending with polyethylene glycol (PEG, 10wt.%). The results demonstrated that superabsorbent hydrogels (SAP) were produced with swelling degree typically ranging from 100% to 5000%, which was significantly dependent on the concentration of CA crosslinker and the addition of PEG as network modifier. The spectroscopical characterizations indicated that the mechanism of CA crosslinking was mostly associated with the chemical reaction with CMC hydroxyl groups and that PEG played an important role on the formation of a hybrid polymeric network. These hydrogels presented very distinct morphological features depended on the degree of crosslinking and the surface nanomechanical properties (e.g., elastic moduli) were drastically affected (from approximately 0.08GPa to 2.0GPa) due to the formation of CMC-PEG hybrid nanostructures. These CMC-based hydrogels were cytocompatible considering the in vitro cell viability responses of over 95% towards human embryonic kidney cells (HEK293T) used as model cell line.


Subject(s)
Bandages/microbiology , Biocompatible Materials/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyethylene Glycols/chemistry , Biocompatible Materials/therapeutic use , Carboxymethylcellulose Sodium/therapeutic use , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/therapeutic use , HEK293 Cells , Humans , Hydrogels/chemistry , Hydrogels/therapeutic use , Polyethylene Glycols/therapeutic use , Wound Healing/drug effects
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 189: 393-404, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28843194

ABSTRACT

Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M=Cd, Pb, Zn, X=S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.


Subject(s)
Bioengineering/methods , Carboxymethylcellulose Sodium/chemistry , Fluorescent Dyes/chemistry , Imaging, Three-Dimensional , Molecular Probes/chemistry , Nanoconjugates/chemistry , Quantum Dots/chemistry , Semiconductors , Cell Survival , HEK293 Cells , Humans , Nanoconjugates/ultrastructure , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
20.
Environ Technol ; 39(22): 2856-2872, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28805161

ABSTRACT

In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g-1 depending on the dye concentration (from 100 to 500 mg L-1), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L-1, 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Adsorption , Carboxymethylcellulose Sodium , Coloring Agents , Humans , Hydrogels
SELECTION OF CITATIONS
SEARCH DETAIL
...